Electric Charges and Fields - Result Question 26

26. A semi-circular arc of radius ’ $a$ ’ is charged uniformly and the charge per unit length is $\lambda$. The electric field at the centre of this arc is

[2000]

(a) $\frac{\lambda}{2 \pi \varepsilon_0 a}$

(b) $\frac{\lambda}{2 \pi \varepsilon_0 a^{2}}$

(c) $\frac{\lambda}{4 \pi^{2} \varepsilon_0 a}$

(d) $\frac{\lambda^{2}}{2 \pi \varepsilon_0 a}$

Show Answer

Answer:

Correct Answer: 26. (a)

Solution:

  1. (a) $\lambda=$ linear charge density;

Charge on elementary portion $d x=\lambda d x$.

Electric field at $O, d E=\frac{\lambda d x}{4 \pi \varepsilon_0 a^{2}}$

Horizontal electric field, i.e., perpendicular to $A O$, will be cancelled.

Hence, net electric field $=$ addition of all electrical fields in direction of $A O$

$=\Sigma d E \cos \theta$

$\Rightarrow E=\int \frac{\lambda d x}{4 \pi \varepsilon_0 a^{2}} \cos \theta$

Also, $d \theta=\frac{d x}{a}$ or $d x=a d \theta$

$E=\int _{-\pi / 2}^{\pi / 2} \frac{\lambda \cos \theta d \theta}{4 \pi \varepsilon_0 a}=\frac{\lambda}{4 \pi \varepsilon_0 a}[\sin \theta] _{-\pi / 2}^{\pi / 2}$

$=\frac{\lambda}{4 \pi \varepsilon_0 a}[1-(-1)]=\frac{\lambda}{2 \pi \varepsilon_0 a}$