Dual Nature of Radiation and Matter - Result Question 6

6. An electron of mass $m$ and a photon have same energy E. The ratio of de-Broglie wavelengths associated with them is :

[2016]

(a) $\frac{1}{c}(\frac{E}{2 m})^{\frac{1}{2}}$

(b) $(\frac{E}{2 m})^{\frac{1}{2}}$

(c) $c(2 mE)^{\frac{1}{2}}$

(d) $\frac{1}{xc}(\frac{2 m}{E})^{\frac{1}{2}}$

Show Answer

Answer:

Correct Answer: 6. (a)

Solution:

  1. (a) For electron De-Broglie wavelength,

$\lambda_e=\frac{h}{\sqrt{2 mE}}$

For photon $E=pc$

$\Rightarrow$ De-Broglie wavelength, $\lambda _{Ph}=\frac{hc}{E}$

$\therefore \quad \frac{\lambda_e}{\lambda _{Ph}}=\frac{h}{\sqrt{2 mE}} \times \frac{E}{hc}=(\frac{E}{2 m})^{1 / 2} \frac{1}{c}$