Dual Nature of Radiation and Matter - Result Question 4

«««< HEAD:content/english/neet-pyq-chapterwise/physics/dual-nature-of-radiation-and-matter/dual-nature-of-radiation-and-matter-result-question-4.md

4. An electron of mass $m$ with an initial velocity $\vec{V}=V_0 \hat{i} \quad(V_0>0)$ enters an electric field $\vec{E}=-E_0 \hat{i}(E_0=.$ constant $.>0)$ at $t=0$. If $\lambda_0$ is its de-Broglie wavelength initially, then its deBroglie wavelength at time $t$ is [2018]

======= ####4. An electron of mass $m$ with an initial velocity $\vec{V}=V_0 \hat{i} \quad(V_0>0)$ enters an electric field $\vec{E}=-E_0 \hat{i}(E_0=.$ constant $.>0)$ at $t=0$. If $\lambda_0$ is its de-Broglie wavelength initially, then its deBroglie wavelength at time $t$ is [2018]

3e0f7ab6f6a50373c3f2dbda6ca2533482a77bed:content/english/neet-pyq-chapterwise/physics/dual-nature-of-radiation-and-matter/dual-nature-of-radiation-and-matter—result-question-4.md (a) $\frac{\lambda_0}{(1+\frac{e E_0}{m V_0} t)}$

(b) $\lambda_0(1+\frac{e E_0}{m V_0} t)$

(c) $\lambda_0$

(d) $\lambda_0 t$

Show Answer

Answer:

Correct Answer: 4. (a)

Solution:

  1. (a) Initial de-Brogile wavelength

$ \begin{equation*} \lambda_0=\frac{h}{m V_0} \tag{i} \end{equation*} $

Acceleration of electron

$ a=\frac{e E_0}{m} \quad(\because F=m a=e E_0) $

Velocity after time ’ $t$ '

$ \begin{aligned} V & =(V_0+\frac{e E_0}{m} t) \\ \text{ So, } \lambda & =\frac{h}{m V}=\frac{h}{m(V_0+\frac{e E_0}{m} t)} \end{aligned} $

$ \begin{equation*} =\frac{h}{m V_0[1+\frac{e E_0}{m V_0} t]}=\frac{\lambda_0}{[1+\frac{e E_0}{m V_0} t]} \tag{ii} \end{equation*} $

Dividing eqs. (ii) by (i),

de-Broglie wavelength $\lambda=\frac{\lambda_0}{[1+\frac{e E_0}{m V_0} t]}$