Dual Nature of Radiation and Matter - Result Question 38

40. A source $S_1$ is producing, $10^{15}$ photons per second of wavelength $5000 \AA$. Another source $S_2$ is producing $1.02 \times 10^{15}$ photons per second of wavelength $5100 \AA$ Then, (power of $S_2$ ) (power of $S_1$ ) is equal to :

[2010]

(a) 1.00

(b) 1.02

(c) 1.04

(d) 0.98

Show Answer

Answer:

Correct Answer: 40. (a)

Solution:

  1. (a) Energy emitted/sec by $S_1, P_1=n_1 \frac{h c}{\lambda_1}$

Energy emitted/sec by $S_2, P_2=n_2 \frac{h c}{\lambda_2}$

$\therefore \quad \frac{P_2}{P_1}=\frac{n_2}{n_1} \cdot \frac{\lambda_1}{\lambda_2}$

$ =\frac{1.02 \times 10^{15}}{10^{15}} \cdot \frac{5000}{5100}=1.0 $