Alternating Current - Result Question 26

«««< HEAD:content/english/neet-pyq-chapterwise/physics/alternating-current/alternating-current-result-question-26.md

26. A coil of inductive reactance $31 \Omega$ has a resistance of $8 \Omega$. It is placed in series with a condenser of capacitative reactance $25 \Omega$. The combination is connected to an a.c. source of 110 volt. The power factor of the circuit is [2006]

======= ####26. A coil of inductive reactance $31 \Omega$ has a resistance of $8 \Omega$. It is placed in series with a condenser of capacitative reactance $25 \Omega$. The combination is connected to an a.c. source of 110 volt. The power factor of the circuit is [2006]

3e0f7ab6f6a50373c3f2dbda6ca2533482a77bed:content/english/neet-pyq-chapterwise/physics/alternating-current/alternating-current—result-question-26.md (a) 0.64

(b) 0.80

(c) 0.33

(d) 0.56

Show Answer

Answer:

Correct Answer: 26. (b)

Solution:

(b) Power factor, $\phi=\frac{R}{\sqrt{(\omega L-\frac{1}{\omega C})^{2}+R^{2}}}$

$ =\frac{8}{\sqrt{(31-25)^{2}+8^{2}}}=\frac{8}{\sqrt{6^{2}+8^{2}}}=\frac{8}{10}=0.8 $

Power factor $=\cos \theta=\frac{R}{Z}$

For purely inductive and purely capacitive circuits, $\theta=90^{\circ}$

Power factor $=\cos \theta=\cos 90^{\circ}=\theta$ For non-inductive circuit, $\theta=0^{\circ}$ $\cos \theta=\cos 0^{\circ}=1$