Alternating Current - Result Question 24

24. Power dissipated in an LCR series circuit connected to an a.c source of emf $\varepsilon$ is [2009]

(a) $\frac{\varepsilon^{2} \sqrt{R^{2}+(L \omega-\frac{1}{C \omega})^{2}}}{R}$

(b) $\varepsilon^{2}[R^{2}+(L \omega-\frac{1}{C \omega})^{2}]$

(c) $\sqrt{R^{2}+(L \omega-\frac{1}{C \omega})^{2}}$

(d)

$ \frac{\varepsilon^{2} R}{[R^{2}+(L \omega-\frac{1}{C \omega})^{2}]} $

Show Answer

Answer:

Correct Answer: 24. (d)

Solution:

  1. (d) Power dissipated in series LCR;

$P=I^{2} R=\frac{\varepsilon^{2}}{(Z)^{2}} R$

$=\frac{\varepsilon^{2} R}{[R^{2}+(\omega L-\frac{1}{\omega C})^{2}]}$ $Z=\sqrt{R^{2}+(\omega L-\frac{1}{\omega C})^{2}}$

is called the impedance of the circuit.