Alternating Current - Result Question 15

«««< HEAD:content/english/neet-pyq-chapterwise/physics/alternating-current/alternating-current-result-question-15.md

15. An inductor $20 mH$, a capacitor $50 \mu F$ and a resistor $40 \Omega$ are connected in series across a source of emf $=10 \sin 340 t$. The power loss in A.C. circuit is :

======= ####15. An inductor $20 mH$, a capacitor $50 \mu F$ and a resistor $40 \Omega$ are connected in series across a source of emf $=10 \sin 340 t$. The power loss in A.C. circuit is :

3e0f7ab6f6a50373c3f2dbda6ca2533482a77bed:content/english/neet-pyq-chapterwise/physics/alternating-current/alternating-current—result-question-15.md (a) $0.51 W$

(b) $0.67 W$

(c) $0.76 W$

(d) $0.89 W$

[2016]

Show Answer

Answer:

Correct Answer: 15. (a)

Solution:

  1. (a) Given: $L=20 mH ; C=50 \mu F ; R=40 \Omega$

$V=10 \sin 340 t$

$\therefore \quad V _{\text{runs }}=\frac{10}{\sqrt{2}}$

$X_C=\frac{1}{\omega C}=\frac{1}{340 \times 50 \times 10^{-6}}=58.8 \Omega$

$X_L=\omega L=340 \times 20 \times 10^{-3}=6.8 \Omega$

Impedance, $Z=\sqrt{R^{2}+(X_C-X_L)^{2}}$

$=\sqrt{40^{2}+(58.8-6.8)^{2}}=\sqrt{4304} \Omega$

Power loss in A.C. circuit,

$ \begin{aligned} & P=i _{\text{rms }}^{2} R=(\frac{V _{\text{rms }}}{Z})^{2} R \\ & =(\frac{10 / \sqrt{2}}{\sqrt{4304}})^{2} \times 40=\frac{50 \times 40}{4304} \simeq 0.51 W \end{aligned} $