Thermodynamics and Thermochemistry 1 Question 10

10. The standard electrode potential $E^{\Theta}$ and its temperature coefficient $\left(\frac{d E^{\Theta}}{d T}\right)$ for a cell are $2 \mathrm{~V}$ and $-5 \times 10^{-4} \mathrm{VK}^{-1}$ at $300 \mathrm{~K}$ respectively. The cell reaction is

$\mathrm{Zn}(s)+\mathrm{Cu}^{2+}(a q) \rightarrow \mathrm{Zn}^{2+}(a q)+\mathrm{Cu}(s)$

The standard reaction enthalpy $\left(\Delta_{r} H^{\Theta}\right)$ at $300 \mathrm{~K} \mathrm{in} \mathrm{kJ} \mathrm{mol}^{-1}$ is, $\quad\left[\mathrm{Use}, R=8 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right.$ and $F=96,000 \mathrm{C} \mathrm{mol}^{-1}$ ]

(a) -412.8

(b) -384.0

(c) 206.4

(d) 192.0

(2019 Main, 12 Jan I)

Thermodynamics and Thermochemistry

Show Answer

Solution:

  1. Given,

$$ \begin{aligned} E^{\circ} & =2 \mathrm{~V},\left(\frac{d E^{\circ}}{d T}\right)=-5 \times 10^{-4} \mathrm{VK}^{-1} \ T & =300 \mathrm{~K}, R=8 \mathrm{JK}^{-1} \mathrm{~mol}^{-1} \ F & =96000 \mathrm{Cmol}^{-1} \end{aligned} $$

According to Gibbs-Helmholtz equation,

$$ \Delta G=\Delta H-T \Delta S $$

$$ \text { Also, } \quad \Delta G=-n F E^{\circ} \text { cell } $$

On substituting the given values in equation (ii), we get

$$ \Delta G=-2 \times 96000 \mathrm{C} \mathrm{mol}^{-1} \times 2 \mathrm{~V} $$

$[\because n=2$ for the given reaction $]$

$$ =-4 \times 96000 \mathrm{~J} \mathrm{~mol}^{-1} $$

$$ =-384000 \mathrm{~J} \mathrm{~mol}^{-1} $$

Now, $\quad \Delta S=n F\left(\frac{d E^{\circ}}{d T}\right)$ or

$$ \begin{aligned} \Delta S & =2 \times 96000 \mathrm{C} \mathrm{mol}^{-1} \times\left(-5 \times 10^{-4} \mathrm{VK}^{-1}\right) \ & =-96 \mathrm{JK}^{-1} \mathrm{~mol}^{-1} \end{aligned} $$

Thus, on substituting the values of $\Delta G$ and $\Delta S$ in Eq. (i), we get $-384000 \mathrm{~J} \mathrm{~mol}^{-1}$

$$ \begin{aligned} & =\Delta H-300 \mathrm{~K} \times\left(-96 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right) \ \Delta H & =-384000-28800 \mathrm{Jmol}^{-1} \ & =-412800 \mathrm{~J} \mathrm{~mol}^{-1} \ & =-412.800 \mathrm{~kJ} \mathrm{~mol}^{-1} \end{aligned} $$