States of Matter 1 Question 40

40. Equal weights of methane and oxygen are mixed in an empty container at $25^{\circ} \mathrm{C}$. The fraction of the total pressure exerted by oxygen is

$(1981,1 \mathrm{M})$

(a) $\frac{1}{3}$

(b) $\frac{1}{2}$

(c) $\frac{2}{3}$

(d) $\frac{1}{3} \times \frac{273}{298}$

Show Answer

Solution:

  1. If $x \mathrm{~g}$ of both oxygen and methane are mixed then :

$$ \begin{aligned} \text { Mole of oxygen } & =\frac{x}{32} \ \text { Mole of methane } & =\frac{x}{16} \end{aligned} $$

$$ \Rightarrow \quad \text { Mole fraction of oxygen }=\frac{\frac{x}{32}}{\frac{x}{32}+\frac{x}{16}}=\frac{1}{3} $$

According to law of partial pressure

Partial pressure of oxygen $\left(p_{\mathrm{O}_{2}}\right)=$ Mole fraction $\times$ Total pressure

$$ \Rightarrow \quad \frac{p_{\mathrm{O}_{2}}}{p}=\frac{1}{3} $$