States of Matter 1 Question 1

1. Points I, II and III in the following plot respectively correspond to ( $v_{\mathrm{mp}}:$ most probable velocity)

(2019 Main, 10 April II)

(a) $v_{\mathrm{mp}}$ of $\mathrm{H}{2}(300 \mathrm{~K})$; $v{\mathrm{mp}}$ of $\mathrm{N}{2}(300 \mathrm{~K})$; $v{\mathrm{mp}}$ of $\mathrm{O}_{2}(400 \mathrm{~K})$

(b) $v_{\mathrm{mp}}$ of $\mathrm{O}{2}(400 \mathrm{~K}) ; v{\mathrm{mp}}$ of $\mathrm{N}{2}(300 \mathrm{~K}) ; v{\mathrm{mp}}$ of $\mathrm{H}_{2}(300 \mathrm{~K})$

(c) $v_{\mathrm{mp}}$ of $\mathrm{N}{2}(300 \mathrm{~K})$; $v{\mathrm{mp}}$ of $\mathrm{O}{2}(400 \mathrm{~K})$; $v{\mathrm{mp}}$ of $\mathrm{H}_{2}(300 \mathrm{~K})$

(d) $v_{\mathrm{mp}}$ of $\mathrm{N}{2}(300 \mathrm{~K}) ; v{\mathrm{mp}}$ of $\mathrm{H}{2}(300 \mathrm{~K}) ; v{\mathrm{mp}}$ of $\mathrm{O}_{2}(400 \mathrm{~K})$

Show Answer

Solution:

Key Idea From kinetic gas equation,

Most probable velocity $\left(v_{\mathrm{mp}}\right)=\sqrt{\frac{2 R T}{M}}$

where, $R=$ gas constant, $T=$ temperature, $M=$ molecular mass

$v_{\mathrm{mp}}=\sqrt{\frac{2 R T}{M}}$, i.e. $v_{\mathrm{mp}} \propto \sqrt{\frac{T}{M}}$
Gas $\boldsymbol{M}$ $\boldsymbol{T}(\mathrm{K})$ $\sqrt{\boldsymbol{T} / \boldsymbol{M}}$
$\mathrm{H}_{2}$ 2 300 $\sqrt{300 / 2}=\sqrt{150} \ldots$ III (Highest)
$\mathrm{N}_{2}$ 28 300 $\sqrt{300 / 28}=\sqrt{10.71} \ldots$ I (Lowest)
$\mathrm{O}_{2}$ 32 400 $\sqrt{400 / 32}=\sqrt{12.5} \ldots$ II

So,

I. corresponds to $v_{\mathrm{mp}}$ of $\mathrm{N}_{2}(300 \mathrm{~K})$

II. corresponds to $v_{\mathrm{mp}}$ of $\mathrm{O}_{2}(400 \mathrm{~K})$

III. corresponds to $v_{\mathrm{mp}}$ of $\mathrm{H}_{2}(300 \mathrm{~K})$