Some Basic Concepts of Chemistry 2 Question 9

9. The ratio of mass per cent of $\mathrm{C}$ and $\mathrm{H}$ of an organic compound $\left(\mathrm{C}{x} \mathrm{H}{y} \mathrm{O}{z}\right)$ is $6: 1$. If one molecule of the above compound $\left(\mathrm{C}{x} \mathrm{H}{y} \mathrm{O}{z}\right)$ contains half as much oxygen as required to burn one molecule of compound $\mathrm{C}{x} \mathrm{H}{y}$ completely to $\mathrm{CO}{2}$ and $\mathrm{H}{2} \mathrm{O}$. The empirical formula of compound $\mathrm{C}{x} \mathrm{H}{y} \mathrm{O}_{z}$ is

(2018 Main)

(a) $\mathrm{C}{3} \mathrm{H}{6} \mathrm{O}_{3}$

(b) $\mathrm{C}{2} \mathrm{H}{4} \mathrm{O}$

(c) $\mathrm{C}{3} \mathrm{H}{4} \mathrm{O}_{2}$

(d) $\mathrm{C}{2} \mathrm{H}{4} \mathrm{O}_{3}$

Show Answer

Solution:

  1. We can calculate the simplest whole number ratio of $\mathrm{C}$ and $\mathrm{H}$ from the data given, as
Element Relative
mass
Molar
mass
Relative
mole
Simplest whole
number ratio
$\mathrm{C}$ 6 12 $\frac{6}{12}=0.5$ $\frac{0.5}{0.5}=1$
$\mathrm{H}$ 1 1 $\frac{1}{1}=1$ $\frac{1}{0.5}=2$

Alternatively this ratio can also be calculated directly in the terms of $x$ and $y$ as

$\frac{12 x}{y}=\frac{6}{1}($ given and molar mass of $\mathrm{C}=12, \mathrm{H}=1$ )

Now, after calculating this ratio look for condition 2 given in the question i.e. quantity of oxygen is half of the quantity required to burn one molecule of compound $\mathrm{C}{x} \mathrm{H}{y}$ completely to $\mathrm{CO}{2}$ and $\mathrm{H}{2} \mathrm{O}$. We can calculate number of oxygen atoms from this as consider the equation.

$$ \mathrm{C}{x} \mathrm{H}{y}+\left[x+\frac{y}{4}\right] \mathrm{O}{2} \longrightarrow x \mathrm{CO}{2}+\frac{y}{2} \mathrm{H}_{2} \mathrm{O} $$

Number of oxygen atoms required $=2 \times\left[x+\frac{y}{4}\right]=\left[2 x+\frac{y}{2}\right]$

Now given, $\quad z=\frac{1}{2}\left[2 x+\frac{y}{2}\right]=\left[x+\frac{y}{4}\right]$

Here we consider $x$ and $y$ as simplest ratios for $\mathrm{C}$ and $\mathrm{H}$ so now putting the values of $x$ and $y$ in the above equation.

$$ z=\left[x+\frac{y}{4}\right]=\left[1+\frac{2}{4}\right]=1.5 $$

Thus, the simplest ratio figures for $x, y$ and $z$ are $x=1, y=2$ and $z=1.5$

Now, put these values in the formula given i.e. $\mathrm{C}{x} \mathrm{H}{y} \mathrm{O}{z}=\mathrm{C}{1} \mathrm{H}{2} \mathrm{O}{1.5}$

So, empirical formula will be $\left[\mathrm{C}{1} \mathrm{H}{2} \mathrm{O}{1.5}\right] \times 2=\mathrm{C}{2} \mathrm{H}{4} \mathrm{O}{3}$