Some Basic Concepts of Chemistry 1 Question 1

1. 5 moles of $A B_{2}$ weight $125 \times 10^{-3} \mathrm{~kg}$ and 10 moles of $A_{2} B_{2}$ weight $300 \times 10^{-3} \mathrm{~kg}$. The molar mass of $A\left(M_{A}\right)$ and molar mass of $B\left(M_{B}\right)$ in $\mathrm{kg} \mathrm{mol}^{-1}$ are

(a) $M_{A}=10 \times 10^{-3}$ and $M_{B}=5 \times 10^{-3}$

(2019 Main, 12 April I)

(b) $M_{A}=50 \times 10^{-3}$ and $M_{B}=25 \times 10^{-3}$

(c) $M_{A}=25 \times 10^{-3}$ and $M_{B}=50 \times 10^{-3}$

(d) $M_{A}=5 \times 10^{-3}$ and $M_{B}=10 \times 10^{-3}$

Show Answer

Solution:

Key Idea To find the mass of $A$ and $B$ in the given question, mole concept is used.

Number of moles $(n)=\frac{\text { given mass }(w)}{\text { molecular mass }(M)}$

Compound Mass of $A(g)$ Mass of $B(g)$
$A B_{2}$ $M_{A}$ $2 M_{B}$
$A_{2} B_{2}$ $2 M_{A}$ $2 M_{B}$

We know that,

Number of moles $(n)=\frac{\text { given mass }(w)}{\text { molecular mass }(M)}$

$$ n \times M=w $$

Using equation (A), it can be concluded that

$$ \begin{aligned} 5\left(M_{A}+2 M_{B}\right) & =125 \times 10^{-3} \mathrm{~kg} \ 10\left(2 M_{A}+2 M_{B}\right) & =300 \times 10^{-3} \mathrm{~kg} \end{aligned} $$

From equation (i) and (ii)

$$ \frac{1}{2} \frac{\left(M_{A}+2 M_{B}\right)}{\left(2 M_{A}+2 M_{B}\right)}=\left(\frac{125}{300}\right) $$

On solving the equation, we obtain

$$ \text { and } \quad \begin{aligned} & M_{A}=5 \times 10^{-3} \ & M_{B}=10 \times 10^{-3} \end{aligned} $$

So, the molar mass of $A\left(M_{A}\right)$ is $5 \times 10^{-3} \mathrm{~kg} \mathrm{~mol}^{-1}$ and $B\left(M_{B}\right)$ is $10 \times 10^{-3} \mathrm{~kg} \mathrm{~mol}^{-1}$.