Solutions and Colligative Properties 2 Question 34

34. Addition of $0.643 \mathrm{~g}$ of a compound to $50 \mathrm{~mL}$ of benzene (density : $0.879 \mathrm{~g} / \mathrm{mL}$ ) lowers the freezing point from $5.51^{\circ} \mathrm{C}$ to $5.03^{\circ} \mathrm{C}$. If $K_{f}$ for benzene is 5.12 , calculate the molecular weight of the compound.

$(1992,2 \mathrm{M})$

Passage Based Questions

Passage 1

Properties such as boiling point, freezing point and vapour pressure of a pure solvent change when solute molecules are added to get homogeneous solution. These are called colligative properties. Applications of colligative properties are very useful in day-to-day life.

One of its examples is the use of ethylene glycol and water mixture as anti-freezing liquid in the radiator of automobiles.

A solution $M$ is prepared by mixing ethanol and water. The mole fraction of ethanol in the mixture is 0.9 .

Given, freezing point depression constant of water

$$ \left(K_{f}^{\text {water }}\right)=1.86 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1} $$

Freezing point depression constant of ethanol

$$ \left(K_{f}^{\text {ethanol }}\right)=2.0 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1} $$

Boiling point elevation constant of water

$$ \left(K_{b}^{\text {water }}\right)=0.52 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1} $$

Boiling point elevation constant of ethanol

$$ \left(K_{b}^{\text {ethanol }}\right)=1.2 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1} $$

Standard freezing point of water $=273 \mathrm{~K}$

Standard freezing point of ethanol $=155.7 \mathrm{~K}$

Standard boiling point of water $=373 \mathrm{~K}$ Standard boiling point of ethanol $=351.5 \mathrm{~K}$

Vapour pressure of pure water $=32.8 \mathrm{~mm} \mathrm{Hg}$

Vapour pressure of pure ethanol $=40 \mathrm{~mm} \mathrm{Hg}$

Molecular weight of water $=18 \mathrm{~g} \mathrm{~mol}^{-1}$

Molecular weight of ethanol $=46 \mathrm{~g} \mathrm{~mol}^{-1}$

In answering the following questions, consider the solutions to be ideal dilute solutions and solutes to be non-volatile and non-dissociative.

$(2008,3 \times 4 \mathrm{M}=12 \mathrm{M})$

Show Answer

Solution:

  1. $-\Delta T_{f}=5.51-5.03=0.48$

$\Rightarrow \quad-\Delta T_{f}=0.48=K_{f} \cdot m$

$\Rightarrow \quad 0.48=5.12 \times \frac{0.643}{M} \times \frac{1000}{50 \times 0.879}$

$\Rightarrow \quad M=156 \mathrm{~g} / \mathrm{mol}$