Solutions and Colligative Properties 2 Question 13

13. The freezing point of benzene decreases by $0.45^{\circ} \mathrm{C}$ when $0.2 \mathrm{~g}$ of acetic acid is added to $20 \mathrm{~g}$ of benzene. If acetic acid associates to form a dimer in benzene, percentage association of acetic acid in benzene will be $\left(K_{f}\right.$ for benzene $\left.=5.12 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}\right)$

(2017 Main)

(a) $64.6 %$

(b) $80.4 %$

(c) $74.6 %$

(d) $94.6 %$

Show Answer

Solution:

  1. Let the degree of association of acetic acid $\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$ in benzene is $\alpha$, then
$2 \mathrm{CH}_{3} \mathrm{COOH}$ $\rightleftharpoons\left(\mathrm{CH}{3} \mathrm{COOH}\right){2}$
Initial moles 1 0
Moles at equilibrium $1-\alpha$ $\frac{\alpha}{2}$

$\therefore$ Total moles $=1-\alpha+\frac{\alpha}{2}=1-\frac{\alpha}{2}$ or $i=1-\frac{\alpha}{2}$

Now, depression in freezing point $\left(\Delta T_{f}\right)$ is given as

$$ \Delta T_{f}=i K_{f} m $$

where, $K_{f}=$ molal depression constant or

cryoscopic constant.

$m=$ molality

Molality $=\frac{\text { number of moles of solute }}{\text { weight of solvent (in kg) }}=\frac{0.2}{60} \times \frac{1000}{20}$

Putting the values in Eq. (i)

$$ \begin{array}{ll} \therefore & 0.45=\left1-\frac{\alpha}{2}\right\left[\frac{0.2}{60} \times \frac{1000}{20}\right] \ \Rightarrow & 1-\frac{\alpha}{2}=\frac{0.45 \times 60 \times 20}{5.12 \times 0.2 \times 1000} \ \therefore & 1-\frac{\alpha}{2}=0.527 \Rightarrow \frac{\alpha}{2}=1-0.527 \ \therefore & \quad \alpha=0.946 \end{array} $$

Thus, percentage of association $=94.6 %$