Solutions and Colligative Properties 2 Question 11

11. A solution contain $62 \mathrm{~g}$ of ethylene glycol in $250 \mathrm{~g}$ of water is cooled upto $-10^{\circ} \mathrm{C}$. If $K_{f}$ for water is $1.86 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$, then amount of water (in $\mathrm{g}$ ) separated as ice is

(2019 Main, 9 Jan II)

(a) 32

(b) 48

(c) 64

(d) 16

Show Answer

Solution:

  1. Considering the expression of the depression in freezing point of a solution,

$$ \begin{aligned} \Delta T_{f} & =K_{f} \times m \times i \ T_{f}^{\circ}-T_{f} & =K_{f} \times \frac{w_{B} \times 1000}{M_{B} \times w_{A}(\text { ing })} \times i \end{aligned} $$

Here, $T_{f}^{\circ}=0^{\circ} \mathrm{C}, T_{f}=-10^{\circ} \mathrm{C}$

$w_{B}=$ mass of ethylene glycol $=62 \mathrm{~g}$

$M_{B}=$ molar mass of ethylene glycol

$$ =62 \mathrm{~g} \mathrm{~mol}^{-1} $$

$w_{A}=$ mass of water in $\mathrm{g}$ as liquid solvent,

$i=$ van’t-Hoff factor $=1$ (for ethylene glycol in water)

$K_{f}=1.86 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$

On substituting in Eq. (i), we get

$$ \begin{aligned} 0-(-10) & =1.86 \times \frac{62 \times 1000}{62 \times w_{A}} \times 1 \ \Rightarrow \quad w_{A} & =\frac{1.86 \times 62 \times 1000}{10 \times 62}=186 \mathrm{~g} \end{aligned} $$

So, amount of water separated as ice (solid solvent)

$$ =250-w_{A}=(250-186) \mathrm{g}=64 \mathrm{~g} $$