Organic Chemistry Basics 2 Question 15

«««< HEAD

15. For the estimation of nitrogen, $1.4 \mathrm{~g}$ of an organic compound was digested by Kjeldahl’s method and the evolved ammonia was absorbed in $60 \mathrm{~mL}$ of $M / 10$ sulphuric acid. The unreacted acid required $20 \mathrm{~mL}$ of $M / 10$ sodium hydroxide for complete neutralisation. The percentage of nitrogen in the compound is

======= ####15. For the estimation of nitrogen, $1.4 \mathrm{~g}$ of an organic compound was digested by Kjeldahl’s method and the evolved ammonia was absorbed in $60 \mathrm{~mL}$ of $M / 10$ sulphuric acid. The unreacted acid required $20 \mathrm{~mL}$ of $M / 10$ sodium hydroxide for complete neutralisation. The percentage of nitrogen in the compound is

3e0f7ab6f6a50373c3f2dbda6ca2533482a77bed (a) $6 %$

(b) $10 %$

(c) $3 %$

(d) $5 %$

(2014 Main)

Show Answer

Answer:

Correct Answer: 15. (b)

17. (d) 18. (c) 19. (c) 20. (b)
21. (c) 22. (b) 23. (d) 24. (a)
25. (b) 26. (d) 27. (a) 28. (d)
29. (c) 30. (c) 31. (a) 32. (a)
33. (a) 34. (a) 35. (c) 36. (b)
37. (b) 38. (b) 39. (d) 40. (b)
41. (b) 42. (d) 43. (d) 44. (a)
45. (d) 46. (a) 47. (b) 48. (b)
49. (d) 50. (c) 51. $(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d})$ 52. (a)
53. $(\mathrm{b}, \mathrm{c})$ 54. $(\mathrm{b}, \mathrm{d})$ 55. $(\mathrm{b}, \mathrm{c})$ 56. (c,d)
57. $(\mathrm{a}, \mathrm{c})$ 58. (d) 59. (a)
60. $\mathrm{A} \rightarrow \mathrm{r}, \mathrm{s}, \mathrm{t} ; \mathrm{B} \rightarrow \mathrm{p}, \mathrm{s} ; \mathrm{C} \rightarrow \mathrm{r}, \mathrm{s} ; \mathrm{D} \rightarrow \mathrm{q}, \mathrm{r}$
61. $\mathrm{A} \rightarrow \mathrm{r}, \mathrm{s} ; \mathrm{B} \rightarrow \mathrm{t} ; \mathrm{C} \rightarrow \mathrm{p}, \mathrm{q} ; \mathrm{D} \rightarrow \mathrm{r}$
62. hyperconjugation
63. less 64. cyclic
66. triangular planar 67. geminal, same
68. $s p^{3}$ 69. cylopropane 70. propene 71. aniline
72. tert- $\mathrm{b}$ carbonium ion, 73. (6) 74. (4)

Solution:

  1. THINKING PROCESS This problem is based on the estimation of percentage of $\mathrm{N}$ in organic compound using Kjeldahl’s method. Use the concept of stoichiometry and follow the steps given below to solve the problem.

(a) Write the balanced chemical reaction for the conversion of $\mathrm{N}$ present in organic compound to ammonia, ammonia to ammonium sulphate and ammonium sulphate to sodium sulphate.

(b) Calculate millimoles ( $\mathrm{m}$ moles) of $\mathrm{N}$ present in organic compound followed by mass of $\mathrm{N}$ present in organic compound using the concept of stoichiometry.

(c) At last, calculate $%$ of $\mathrm{N}$ present in organic compound using formula

$$ % \text { of } \mathrm{N}=\frac{\text { Mass of } \mathrm{N} \times 100}{\text { Mass of organic compound }} $$

Mass of organic compound $=1.4 \mathrm{~g}$

Let it contain $x \mathrm{~m}$ mole of $\mathrm{N}$ atom.

$$ \begin{aligned} & \text { Organic compound } \longrightarrow \underset{3}{\mathrm{NH}{3}} \ & x \mathrm{~m} \text { mole } \ & 2 \mathrm{NH}{3}+\underset{\substack{6 \mathrm{~m} \text { mole } \ \text { initially taken }}}{\mathrm{H}{2} \mathrm{SO}{4}} \longrightarrow\left(\mathrm{NH}{4}\right){2} \mathrm{SO}{4} \ & \mathrm{H}{2} \mathrm{SO}{4}+2 \mathrm{NaOH} \longrightarrow \mathrm{Na}{2} \mathrm{SO}{4}+2 \mathrm{H}{2} \mathrm{O} \end{aligned} $$

$2 \mathrm{~m}$ mole $\mathrm{NaOH}$ reacted.

Hence, $\mathrm{m}$ moles of $\mathrm{H}{2} \mathrm{SO}{4}$ reacted in Eq. (ii) $=1$

$\Rightarrow \mathrm{m}$ moles of $\mathrm{H}{2} \mathrm{SO}{4}$ reacted from Eq. (i) $=6-1$

$$ =5 \mathrm{~m} \text { moles } $$

$\Rightarrow \mathrm{m}$ moles of $\mathrm{NH}_{3}$ in Eq. (i) $=2 \times 5=10 \mathrm{~m}$ moles

$\Rightarrow \mathrm{m}$ moles of $\mathrm{N}$ atom in the organic compound

$$ =10 \mathrm{~m} \text { moles } $$

$\Rightarrow$ Mass of $\mathrm{N}=10 \times 10^{-3} \times 14=0.14 \mathrm{~g}$

$$ \begin{aligned} % \text { of } \mathrm{N} & =\frac{\begin{array}{c} \text { Mass of } \mathrm{N} \text { present in } \ \text { organic compound } \end{array}}{\text { Mass of organic compound }} \times 100 \ \Rightarrow \quad % \text { of } \mathrm{N} & =\frac{0.14}{1.4} \times 100 \ & =10 % \end{aligned} $$