Electrochemistry 1 Question 7

7. How long (approximate) should water be electrolysed by passing through 100 amperes current so that the oxygen released can completely burn $27.66 \mathrm{~g}$ of diborane?

(Atomic weight of $B=10.8 \mu$ )

(2018 Main)

(a) 6.4 hours

(b) 0.8 hours

(c) 3.2 hours

(d) 1.6 hours

Show Answer

Answer:

Correct Answer: 7. (c)

Solution:

  1. Given that, $i=100 \mathrm{amp}$. also, $27.66 \mathrm{~g}$ of diborane $\left(\mathrm{B}{2} \mathrm{H}{6}\right)$

Molecular mass of $\mathrm{B}{2} \mathrm{H}{6}=10.8 \times 2+6=27.6$

Number of moles of $\mathrm{B}{2} \mathrm{H}{6}$ in $27.66 \mathrm{~g}=\frac{\text { Given mass }}{\text { Molar mass }}=\frac{27.66}{27.6} \approx 1$

Now consider the equation

$$ \mathrm{B}{2} \mathrm{H}{6}+3 \mathrm{O}{2} \longrightarrow \mathrm{B}{2} \mathrm{O}{3}+3 \mathrm{H}{2} \mathrm{O} $$

From the equation we can interpret that 3 moles of oxygen is required to burn 1 mole (i.e. $27.6 \mathrm{~g}$ ) $\mathrm{B}{2} \mathrm{H}{6}$ completely.

Also consider the electrolysis reaction of water i.e.

$$ \begin{aligned} & \mathrm{H}{2} \mathrm{O} \rightleftharpoons 2 \mathrm{H}^{+}+\mathrm{O}^{–} \ & 2 \mathrm{H}^{+} \xrightarrow[\text { Cathode }]{\stackrel{+2 e^{-}}{\longrightarrow}} 2 \mathrm{H} \longrightarrow \mathrm{H}{2} \uparrow \ & \mathrm{O}^{–} \xrightarrow[-2 \mathrm{e}^{-}]{\text {Anode }} \mathrm{O} \xrightarrow[\text { atoms }]{2 \text { such }} \mathrm{O}_{2} \uparrow \end{aligned} $$

From the above equation it can be easily interpreted that in electrolysis of water for the production of 1 mole of oxygen from 1 mole of $\mathrm{H}{2} \mathrm{O}$ at anode 4 moles electrons are required. Likewise for the production of 3 moles of $\mathrm{O}{2} 12(3 \times 4)$ moles of electrons will be needed.

So, the total amount of charge required to produce 3 moles of oxygen will be $12 \times F$ or $12 \times 96500$

We know $Q=i t$

So, $\quad 12 \times 96500=100 \times t$ in seconds

or

$$ \frac{12 \times 96500}{100 \times 3600}=\text { tin hours }=3.2 \text { hours } $$

Electrochemistry 157