Chemical and Ionic Equilibrium 2 Question 73

8. An aqueous solution contains an unknown concentration of $\mathrm{Ba}^{2+}$. When $50 \mathrm{~mL}$ of a $1 \mathrm{M}$ solution of $\mathrm{Na}{2} \mathrm{SO}{4}$ is added, $\mathrm{BaSO}{4}$ just begins to precipitate. The final volume is $500 \mathrm{~mL}$. The solubility product of $\mathrm{BaSO}{4}$ is $1 \times 10^{-10}$. What is the original concentration of $\mathrm{Ba}^{2+}$ ?

(2018 Main)

(a) $5 \times 10^{-9} \mathrm{M}$

(b) $2 \times 10^{-9} \mathrm{M}$

(c) $1.1 \times 10^{-9} \mathrm{M}$

(d) $1.0 \times 10^{-10} \mathrm{M}$

Show Answer

Answer:

Correct Answer: 8. (c)

9. $(\mathrm{d})$ 10. $(\mathrm{b})$ 11. (b) 12. (d)
13. $(\mathrm{d})$ 14. (d) 15. (b) 16. (a)
17. (c) 18. (d) 19. (a) 20. (b)
21. (d) 22. (d) 23. (a) 24. (a)
25. (d) 26. (c) 27. (a) 28. (d)
29. (c) 30. (a) 31. (b) 32. (a)
33. (a) 34. (b) 35. (d) 36. (b)
37. (c, d) 38. $(\mathrm{a}, \mathrm{b}, \mathrm{c})$ 39. (b, c) 40. (4.47)
41. $(\mathrm{d})$ 42. $\mathrm{I}_{2}$ 43. hydration
44. amphoteric 45. $\mathrm{SO}_{4}^{2-}$ 46. $\mathrm{F}$ 47. $\mathrm{F}$
48. $\mathrm{F}$ 49. $(3)$ 50. $\left(1.6 \times 10^{-7}\right)$ 52. $(8)$
53. $(9)$ 55. $(4.86)$ 56. $\left(1.2 \times 10^{-3} \mathrm{M}\right)$
58. $\left(2 \times 10^{-8}\right)$ 61. $(11.5)$ 62. $(6.50)$ 64. (1)
65. $(80)$ 67. $\left(1.8 \times 10^{-5}\right)$ 68. $\left(9.67 \times 10^{-11}\right)$ 69.
$\left(27.78 \times 10^{3}\right)$ 74. $(4.20)$
71. $(0.177)$ 72. $\left(8.7 \times 10^{-4} \mathrm{gL}^{-1}\right)$
75. $(99.83)$ 77. $(>7)$

Solution:

  1. Its given that the final volume is $500 \mathrm{~mL}$ and this final volume was arrived when $50 \mathrm{~mL}$ of $1 \mathrm{M} \mathrm{Na}{2} \mathrm{SO}{4}$ was added to unknown $\mathrm{Ba}^{2+}$ solution.

So, we can interpret the volume of unknown $\mathrm{Ba}^{2+}$ solution as $450 \mathrm{~mL}$ i.e.

$$ \underset{\substack{\mathrm{Ba}^{2+} \ \text { solution }}}{450 \mathrm{~mL}}+\underset{\substack{\mathrm{Na}{2} \mathrm{SO}{4} \ \text { solution }}}{500 \mathrm{~mL}} \longrightarrow \underset{\substack{\mathrm{BaSO}_{4} \ \text { solution }}}{500 \mathrm{~mL}} $$

From this we can calculate the concentration of $\mathrm{SO}_{4}^{2-}$ ion in the solution via

$$ \begin{gathered} M_{1} V_{1}=M_{2} V_{2} \ 1 \times 50=M_{2} \times 500 \end{gathered} $$

(as $1 \mathrm{M} \mathrm{Na}{2} \mathrm{SO}{4}$ is taken into consideration)

$$ M_{2}=\frac{1}{10}=0.1 \mathrm{M} $$

Now for just precipitation,

$$ \begin{aligned} & \text { Ionic product }=\text { Solubility product }\left(K_{\mathrm{sp}}\right) \ & \text { i.e. } \quad\left[\mathrm{Ba}^{2+}\right]\left[\mathrm{SO}{4}^{2-}\right]=K{\text {sp }} \text { of } \mathrm{BaSO}{4} \ & \text { Given } K{\text {sp }} \text { of } \mathrm{BaSO}_{4}=1 \times 10^{-10} \end{aligned} $$

$$ \begin{array}{rlrl} \text { So, } & & {\left[\mathrm{Ba}^{2+}\right][0.1]} & =1 \times 10^{-10} \ \text { or } & {\left[\mathrm{Ba}^{2+}\right]} & =1 \times 10^{-9} \mathrm{M} \end{array} $$

Remember This is the concentration of $\mathrm{Ba}^{2+}$ ions in final solution. Hence, for calculating the $\left[\mathrm{Ba}^{2+}\right]$ in original solution we have to use

$$ \begin{array}{rlrl} & M_{1} V_{1} & =M_{2} V_{2} \ & \text { as } & M_{1} \times 450 & =10^{-9} \times 500 \ \text { so, } & M_{1} & =1.1 \times 10^{-9} \mathrm{M} \end{array} $$