Chemical and Ionic Equilibrium 2 Question 36

«««< HEAD

36. The $K_{\text {sp }}$ of $\mathrm{Ag}{2} \mathrm{CrO}{4}$ is $1.1 \times 10^{-12}$ at $298 \mathrm{~K}$. The solubility (in $\mathrm{mol} / \mathrm{L}$ ) of $\mathrm{Ag}{2} \mathrm{CrO}{4}$ in a $0.1 \mathrm{M} \mathrm{AgNO}_{3}$ solution is

======= ####36. The $K_{\text {sp }}$ of $\mathrm{Ag}{2} \mathrm{CrO}{4}$ is $1.1 \times 10^{-12}$ at $298 \mathrm{~K}$. The solubility (in $\mathrm{mol} / \mathrm{L}$ ) of $\mathrm{Ag}{2} \mathrm{CrO}{4}$ in a $0.1 \mathrm{M} \mathrm{AgNO}_{3}$ solution is

3e0f7ab6f6a50373c3f2dbda6ca2533482a77bed (a) $1.1 \times 10^{-11}$

(b) $1.1 \times 10^{-10}$

(c) $1.1 \times 10^{-12}$

(d) $1.1 \times 10^{-9}$

(2013 Adv.)

Show Answer

Solution:

  1. PLAN In presence of common ion (in this case $\mathrm{Ag}^{+}$ion) solubility of sparingly soluble salt is decreased.

Let solubility of $\mathrm{Ag}{2} \mathrm{CrO}{4}$ in presence of $0.1 \mathrm{M}$

$$ \begin{aligned} & \mathrm{AgNO}{3}=x \ & \mathrm{Ag}{2} \mathrm{CrO}{4} \rightleftharpoons 2 \mathrm{Ag}^{+}+\underset{x}{\mathrm{CrO}{4}^{2-}} \ & \mathrm{AgNO}{3} \rightleftharpoons \underset{0.1}{\mathrm{Ag}^{+}}+\underset{0.1}{\mathrm{NO}{3}^{-}} \end{aligned} $$

Total $\left[\mathrm{Ag}^{+}\right]=(2 x+0.1) \mathrm{M} \approx 0.1 \mathrm{M}$

$$ \text { as } x«<0.1 \mathrm{M} $$

$\left[\mathrm{CrO}_{4}^{2-}\right]=x \mathrm{M}$

Thus, $\quad\left[\mathrm{Ag}^{+}\right]^{2}\left[\mathrm{CrO}{4}^{2-}\right]=K{\text {sp }}$

$$ (0.1)^{2}(x)=1.1 \times 10^{-12} $$

$$ \because \quad x=1.1 \times 10^{-10} \mathrm{M} $$