अध्याय 5 जीवन की मौलिक इकाई
कार्क की पतली काट के अवलोकन पर राबर्ट हुक ने पाया कि इनमें अनेक छोटे-छोटे प्रकोष्ठ हैं, जिसकी सरंचना मधुमक्खी के छत्ते जैसी प्रतीत होती है। कार्क एक पदार्थ है जो वृक्ष की छाल से प्राप्त होता है। सन् 1665 में हुक ने इसे स्वनिर्मित सूक्ष्मदर्शी से देखा था। राबर्ट हुक ने इन प्रकोष्ठकों को कोशिका कहा। Cell (कोशिका) लैटिन शब्द है जिसका अर्थ है “छोटा कमरा”।
उपरोक्त घटना छोटी तथा अर्थहीन लगती हो लेकिन विज्ञान के इतिहास में यह एक बहुत ही महत्वपूर्ण घटना है। इस प्रकार सबसे पहले हुक ने देखा कि सजीवों में अलग-अलग एकक होते हैं। इन एककों का वर्णन करने के लिए जीव विज्ञान में कोशिका शब्द का उपयोग आज तक किया जाता है। आओ, कोशिका के विषय में और जानकारी प्राप्त करें।
5.1 सजीव किससे बने होते हैं?
क्रियाकलाप 5.1
-
प्याज का एक छोटा टुकड़ा लो। चिमटी की सहायता से हम प्याज की अवतल सतह की ओर (भीतरी सतह) से झिल्ली उतार सकते हैं। इस झिल्ली को तुरंत पानी वाले वॉच ग्लास में रख लेते हैं। इससे झिल्ली मुड़ने अथवा सूखने से बच जाएगी। हम इस झिल्ली से क्या करें?
-
एक काँच की स्लाइड लो। इस पर पानी की एक बूँद डालो। अब वॉच ग्लास में रखी झिल्ली के इस छोटे टुकड़े को इस स्लाइड पर रख दो। यह ध्यान रखें कि झिल्ली बिलकुल सीधी हो। एक पतला पेंट ब्रुश इस झिल्ली को स्लाइड पर रखने में आपकी सहायता कर सकता है। अब इस पर एक बूँद सेफ्रामाइन की डालो और इसे कवर स्लिप से ढक दो। कवर स्लिप को सुई की सहायता से इस प्रकार रखें जिससे कि इसमें वायु के बुलबुले न आने पाएँ। अपने अध्यापक से सहायता लें। हमने प्याज की झिल्ली की अस्थायी स्लाइड बनाई है। अब हम इसे पहले कम शक्ति वाले तथा उसके बाद उच्च शक्ति वाले संयुक्त सूक्ष्मदर्शी से देखते हैं।
चित्र 5.1: संयुक्त सूक्ष्मदर्शी
आपने क्या देखा? क्या आप जो संरचना सूक्ष्मदर्शी के द्वारा देखते हैं उसे कागज पर खींच सकते हैं? क्या यह चित्र 5.2 जैसी दिखाई देती है?
चित्र 5.2: प्याज की झिल्ली की कोशिकाएँ
अब हम विभिन्न आकार वाली प्याज की झिल्लियों से अस्थायी स्लाइड बनाएँगे। हम क्या देखते हैं? क्या हम एकसमान संरचनाओं को देखते हैं अथवा भिन्न-भिन्न?
ये संरचनाएँ क्या हैं?
ये सभी संरचनाएँ एक जैसी दिखाई देती हैं। ये सभी मिलकर एक बड़ी संरचना (शल्क कंद) बनाते हैं जैसे प्याज। इस क्रियाकलाप से हमें पता चलता है कि विभिन्न आकार के प्याज में सूक्ष्मदर्शी द्वारा देखने पर एक जैसी संरचनाएँ दिखाई देती हैं। प्याज की झिल्ली की कोशिकाएँ एकसमान हैं। प्याज के आकार से इसका कोई संबंध नहीं है।
ये छोटी-छोटी संरचनाएँ जो हम देख रहे हैं शल्क कंद प्याज की मूलभूत इकाई है। इन संरचनाओं को कोशिका कहते हैं। न केवल प्याज बल्कि जितने भी जीव-जंतु हम अपने आस-पास देखते हैं वे सभी कोशिकाओं से बनते हैं। यद्यपि, कुछ जीव एककोशिक भी होते हैं।
आवर्धक लेंस की खोज के बाद सूक्ष्मदर्शी का आविष्कार संभव हो सका। यह पता चला है कि एक मात्र कोशिका स्वयं में ही एक संपूर्ण जीव जैसे अमीबा, क्लैमिडोमोनास, पैरामीशियम तथा बैक्टीरिया हो सकती है। इन सजीवों को एककोशिक जीव कहते हैं। इसके अतिरिक्त बहुकोशिक जीवों में अनेक कोशिकाएँ समाहित होकर विभिन्न कार्यों को सम्पन्न करने हेतु विभिन्न अंगों का निर्माण करती हैं। इसके कुछ उदाहरण हैं फंजाई (कवक), पादप तथा जंतु। क्या हम कुछ और एककोशिक जीवों के विषय में पता कर सकते हैं?
प्रत्येक बहुकोशिक जीव एक कोशिका से ही विकसित हुआ है। कैसे? कोशिकाएँ विभाजित होकर अपनी ही जैसी कोशिकाएँ बनाती हैं। इस प्रकार सभी कोशिकाएँ अपनी पूर्ववर्ती कोशिकाओं से उत्पन्न होती हैं। कोशिका का सबसे पहले पता रॉबर्ट हुक ने 1665 में लगाया था। उसने कोशिका को कार्क की पतली काट में अनगढ़ सूक्ष्मदर्शी की सहायता से देखा। ल्यूवेनहक (1674) ने सबसे पहले उन्नत सूक्ष्मदर्शी से तालाब के जल में स्वतंत्र रूप से जीवित कोशिकाओं का पता लगाया। रॉबर्ट ब्राउन ने 1831 में कोशिका में केंद्रक का पता लगाया। जे. ई. पुरोकंज ने 1839 में कोशिका में स्थित तरल जैविक पदार्थ को जीवद्रव्य का नाम दिया। दो जीव वैज्ञानिक - एम. स्लीडन (1838) तथा टी. स्वान (1839) ने कोशिका सिद्धांत के विषय में बताया। इस सिद्धांत के अनुसार सभी पौधे तथा जंतु कोशिकाओं से बने हैं और वे जीवन की मूलभूत इकाई हैं। विरचो (1855) ने कोशिका सिद्धांत को और आगे बढ़ाया। उन्होंने बताया कि सभी कोशिकाएँ पूर्ववर्ती कोशिकाओं से बनती हैं। 1940 में इलेक्ट्रॉन सूक्ष्मदर्शी की खोज के बाद कोशिका की जटिल संरचना तथा बहुत से अंगकों को समझना संभव हो सका।
क्रियाकलाप 5.2
-
हम पत्ती की झिल्ली, प्याज की मूलाग्र अथवा विभिन्न आकार के प्याज की झिल्ली की अस्थायी स्लाइड बना सकते हैं।
-
उपरोक्त क्रियाकलाप करने के बाद निम्नलिखित प्रश्नों के उत्तर दीजिए :
(i) क्या सभी कोशिकाएँ आकार तथा आकृति की दृष्टि से एक जैसी दिखाई देती हैं?
(ii) क्या सभी कोशिकाओं की संरचना एक जैसी दिखाई देती है?
(iii) क्या पादप के विभिन्न भागों में पायी जाने वाली कोशिकाओं में कोई अंतर है?
(iv) हमें कोशिकाओं में क्या समानता दिखाई देती है?
कुछ जीवों में विभिन्न प्रकार की कोशिकाएँ भी हो सकती हैं। निम्नलिखित तस्वीर को देखो। ये मानव शरीर की कुछ कोशिकाएँ हैं।
चित्र 5.3: मानव शरीर की विभिन्न कोशिकाएँ
कोशिकाओं की आकृति तथा आकार उनके विशिष्ट कार्यों के अनुरूप होते हैं। कुछ कोशिकाएँ अपना आकार बदलती रहती हैं जैसे एककोशिक अमीबा। कुछ जीवों में कोशिका का आकार लगभग स्थिर रहता है और प्रत्येक प्रकार की कोशिका के लिए विशिष्ट होता है; उदाहरण के लिए तंत्रिका कोशिका।
प्रत्येक जीवित कोशिका में कुछ मूलभूत कार्य करने की क्षमता होती है, जो सभी सजीवों का गुण है। एक जीवित कोशिका ये मूलभूत कार्य कैसे करती है? हम जानते हैं कि बहुकोशिक जीवों में श्रम विभाजन होता है जैसा कि मनुष्यों में। इसका अर्थ यह है कि शरीर के विभिन्न अंग विभिन्न कार्य करते हैं। जैसे मनुष्य के शरीर में हृदय रुधिर को पम्प करता है तथा आमाशय भोजन का पाचन आदि। इसी प्रकार एककोशिक में भी श्रम विभाजन होता है। वास्तव में ऐसी प्रत्येक कोशिका में कुछ विशिष्ट घटक होते हैं जिन्हें कोशिकांग कहते हैं। प्रत्येक कोशिकांग एक विशिष्ट कार्य करता है जैसे कोशिका में नए पदार्थ का निर्माण, अपशिष्ट पदार्थों का निष्कासन आदि। इन कोशिकांगों के कारण ही एक कोशिका जीवित रहती है और अपने सभी कार्य करती है। ये कोशिकांग मिलकर एक मूलभूत इकाई बनाते हैं जिसे कोशिका कहते हैं। यह बड़ा रुचिकर है कि सभी कोशिकाओं में एक ही प्रकार के कोशिकांग होते हैं। इससे कोई फर्क नहीं पड़ता कि उसके कार्य क्या हैं अथवा वे किस जीव में पाई जाती हैं।
5.2 कोशिका किससे बनी होती है? कोशिका का संरचनात्मक संगठन क्या है?
हमने देखा कि कोशिका में विशिष्ट घटक होते हैं जिन्हें कोशिकांग कहते हैं। कोशिका कैसे संगठित होती है?
यदि हम कोशिका का अध्ययन सूक्ष्मदर्शी से करें तो हमें लगभग प्रत्येक कोशिकाओं में तीन गुण दिखाई देंगे; प्लैज्मा झिल्ली, केंद्रक तथा कोशिकाद्रव्य। कोशिका के अंदर होने वाले समस्त क्रियाकलाप तथा उसकी बाह्य पर्यावरण से पारस्परिक क्रियाएँ इन्हीं गुणों के कारण संभव हैं। आओ देखें कैसे?
5.2.1 प्लैज्मा झिल्ली अथवा कोशिका झिल्ली
यह कोशिका की सबसे बाहरी परत है जो कोशिका के घटकों को बाहरी पर्यावरण से अलग करती है। प्लैज्मा झिल्ली कुछ पदार्थों को अंदर अथवा बाहर आने-जाने देती है। यह अन्य पदार्थों की गति को भी रोकती है। कोशिका झिल्ली को इसलिए वर्णात्मक पारगम्य झिल्ली कहते हैं।
कोशिका में पदार्थों की गति कैसे होती है? पदार्थ कोशिका से बाहर कैसे आते हैं?
कुछ पदार्थ जैसे कार्बन डाइऑक्साइड अथवा ऑक्सीजन कोशिका झिल्ली के आर-पार विसरण प्रक्रिया द्वारा आ-जा सकते हैं। हम पिछले अध्यायों में विसरण की प्रक्रिया के विषय में पढ़ चुके हैं। हमने देखा है कि पदार्थों की गति उच्च सांद्रता से निम्न सांद्रता की ओर होती है।
कुछ इसी प्रकार की प्रक्रिया कोशिका में होती है, उदाहरण के लिए, जब कुछ पदार्थ जैसे $\mathrm{CO} _{2}$ (जो एक कोशिकीय अपशिष्ट है और जिसका निष्कासन आवश्यक है) कोशिका में एकत्र हो जाती है तो उसकी सांद्रता बढ़ जाती है। कोशिका के बाह्य पर्यावरण में $\mathrm{CO} _{2}$ की सांद्रता कोशिका में स्थित $\mathrm{CO} _{2}$ की सांद्रता की अपेक्षा कम होती है। जैसे ही कोशिका के अंदर और बाहर $\mathrm{CO} _{2}$ की सांद्रता में अंतर आता है उसी समय उच्च सांद्रता से निम्न सांद्रता की ओर विसरण द्वारा कोशिका से $\mathrm{CO} _{2}$ बाहर निकल जाती है। इसी प्रकार जब कोशिका में ऑक्सीजन की सांद्रता कम हो जाती है तो $\mathrm{O} _{2}$ बाहर से कोशिका में विसरण द्वारा अंदर चली जाती है। अतः कोशिका तथा बाह्य पर्यावरण में गैसों के आदान-प्रदान में विसरण एक महत्वपूर्ण भूमिका निभाती है।
जल भी विसरण के नियमों के अनुकूल व्यवहार करता है। जल के अणुओं की गति जब विभेदक वर्णात्मक पारगम्य झिल्ली द्वारा हो तो उसे परासरण कहते हैं। प्लैज्मा झिल्ली से जल की गति जल में घुले पदार्थों की मात्रा के कारण भी प्रभावित होती है। इस प्रकार परासरण की क्रिया में जल का नेट विसरण एक विभेदक वर्णात्मक परागम्य झिल्ली के द्वारा उच्च विलेय साद्रंता की ओर होता है।
यदि हम किसी जंतु कोशिका अथवा पादप कोशिका को शक्कर अथवा नमक के विलयन में रखें तो क्या होगा? निम्नलिखित तीन घटनाओं में से एक घटना हो सकती है:
1. यदि कोशिका को तनु विलयन वाले माध्यम अर्थात् जल में शक्कर अथवा नमक की मात्रा कम और जल की मात्रा ज्यादा है, में रखा गया है तो जल परासरण विधि द्वारा कोशिका के अंदर चला जाएगा। ऐसे विलयन को अल्पपरासरण दाबी विलयन कहते हैं। जल के अणु कोशिका झिल्ली के दोनों ओर आवागमन करने के लिए स्वतंत्र होते हैं, लेकिन कोशिका के अंदर जाने वाले जल की मात्रा कोशिका से बाहर आने वाले जल की मात्रा से अधिक होगी। इस प्रकार शुद्ध परिणाम यह होगा कि जल कोशिका के अंदर गया। इससे कोशिका फूलने लगेगी।
2. यदि कोशिका को ऐसे माध्यम विलयन में रखा जाए जिसमें बाह्य जल की सांद्रता कोशिका में स्थित जल की सांद्रता के ठीक बराबर हो तो कोशिका झिल्ली से जल में कोई शुद्ध गति नहीं होगी। ऐसे विलयन को समपरासारी विलयन कहते हैं।
जल कोशिका झिल्ली के दोनों ओर आता-जाता है, लेकिन जल की जो मात्रा अंदर गई उतनी ही बाहर आ जाती है। इस प्रकार व्यापक रूप से जल की कोई गति नहीं हुई। इसलिए कोशिका के माप में कोई परिवर्तन नहीं आएगा।
3. यदि कोशिका के बाहर वाला विलयन अंदर के घोल से अधिक सांद्र है तो जल परासरण द्वारा कोशिका से बाहर आ जाएगा। ऐसे विलयन को अतिपरासरणदाबी विलयन कहते हैं।
पुन: जल कोशिका झिल्ली के दोनों ओर आ-जा सकता है, लेकिन इस स्थिति में कोशिका से अधिक जल बाहर आएगा और कम जल अंदर जाएगा। इसलिए कोशिका सिकुड़ जाएगी।
परासरण इस प्रकार विसरण की एक विशिष्ट विधि है जिसमें वर्णात्मक झिल्ली द्वारा गति होती है। आओ, निम्नलिखित क्रियाकलाप करें।
क्रियाकलाप 5.3
अंडे से परासरण
(a) अंडे को तनु हाइड्रोक्लोरिक अम्ल में डालकर उसके कवच को हटाओ। इसका कवच अधि कांशतः कैल्सियम कार्बोनेट का बना होता है। एक पतली बाह्य त्वचा (झिल्ली) अब अंडे को
घेरे रखती है। अंडे को शुद्ध जल में रखो और 5 मिनट के बाद इसका अवलोकन करो। आप क्या देखते हैं?
अंडा फूल जाता है क्योंकि परासरण द्वारा जल अंडे के अंदर चला जाता है।
(b) इसी प्रकार का एक कवचरहित अंडा नमक के सांद्रित विलयन में रखो और 5 मिनट तक उसका अवलोकन करो। अंडा सिकुड़ जाता है। क्यों? जल अंडे से निकलकर नमक के विलयन में आ जाता है, क्योंकि नमक का घोल अधिक सांद्रित है।
इस प्रकार का क्रियाकलाप हम सूखी किशमिश अथवा खूबानी से भी करने का प्रयत्न कर सकते हैं।
क्रियाकलाप 5.4
-
सूखी किशमिश अथवा खूबानी को केवल जल में रखो और उसे कुछ समय के लिए छोड़ दो। उसके बाद उसे शक्कर अथवा नमक के सांद्रित विलयन में रखो। आप निम्नलिखित अंतर देखेंगे।
(a) जब उन्हें जल में रखा गया तो वे जल ग्रहण करके फूल गईं।
A(b) जब उन्हें सांद्रित घोल में रखा गया तो वे जल को बाहर निकाल कर सिकुड़ गईं।
एककोशिकीय अलवणीय जलीय जीवों तथा अधिकांश पादप कोशिकाएँ परासरण द्वारा जल ग्रहण करते हैं। पौधों के मूल द्वारा जल का अवशोषण परासरण का एक उदाहरण है।
इस प्रकार कोशिका के जीवन में विसरण जल तथा गैसों के आदान-प्रदान की प्रक्रिया में महत्वपूर्ण भूमिका निभाता है। इसके अतिरिक्त विसरण, कोशिका को अपने बाहरी पर्यावरण से पोषण ग्रहण करने में सहायता करता है। कोशिका से विभिन्न अणुओं का अंदर आना तथा बाहर निकलना भी विसरण द्वारा ही होता है। इस प्रकार के परिवहन में ऊर्जा की आवश्यकता होती है।
प्लैज्मा झिल्ली लचीली होती है और कार्बनिक अणुओं जैसे लिपिड तथा प्रोटीन की बनी होती है। प्लैज्मा झिल्ली की रचना हम केवल इलैक्ट्रॉन सूक्ष्मदर्शी से देख सकते हैं।
कोशिका झिल्ली का लचीलापन एककोशिक जीवों में कोशिका के बाह्य पर्यावरण से अपना भोजन तथा अन्य पदार्थ ग्रहण करने में सहायता करता है। ऐसी प्रक्रिया को एन्डोसाइटोसिस कहते हैं। अमीबा अपना भोजन इसी प्रक्रिया द्वारा प्राप्त करता है।
विद्यालय के पुस्तकालय अथवा इंटरनेट से इलेक्ट्रॉन सूक्ष्मदर्शी के विषय में पता करें। इसके विषय में अपने अध्यापक से चर्चा करें।
5.2.2 कोशिका भित्ति
पादप कोशिकाओं में प्लैज्मा झिल्ली के अतिरिक्त कोशिका भित्ति भी होती है। पादप कोशिका भित्ति मुख्यतः सेल्यूलोज की बनी होती है। सेल्यूलोज एक बहुत जटिल पदार्थ है और यह पौधों को संरचनात्मक दृढ़ता प्रदान करता है।
जब किसी पादप कोशिका में परासरण द्वारा पानी की हानि होती है तो कोशिका झिल्ली सहित आंतरिक पदार्थ संकुचित हो जाते हैं। इस घटना को जीवद्रव्य कुंचन कहते हैं। हम इस परिघटना को निम्न क्रियाकलाप द्वारा देख सकते हैं।
क्रियाकलाप 5.6
- रिओ की पत्ती की झिल्ली को पानी में रखकर एक स्लाइड बनाओ। इसे उच्च शक्ति वाले सूक्ष्मदर्शी से देखो। छोटे-छोटे हरे कण दिखाई देंगे। इन्हें क्लोरोप्लास्ट कहते हैं। इनमें एक हरा पदार्थ होता है जिसे क्लोरोफिल कहते हैं। इस
स्लाइड पर शक्कर अथवा नमक का सांद्र विलयन डालो। एक मिनट प्रतीक्षा करो और इसे सूक्ष्मदर्शी से देखो। हम क्या देखते हैं?
- अब रिओ की पत्तियों को कुछ मिनट तक जल में उबालो। इससे पत्तियों की सभी कोशिकाएँ मर जाएँगी। अब एक पत्तियों को स्लाइड पर रखो और उसे सूक्ष्मदर्शी से देखो। स्लाइड पर रखी इस पत्ती पर शक्कर अथवा नमक का सांद्र विलयन डालो। एक मिनट प्रतीक्षा करो और पुनः सूक्ष्मदर्शी से देखो। हम क्या देखते हैं? क्या अब जीवद्रव्य कुंचन हुआ?
इस क्रियाकलाप से क्या निष्कर्ष निकलता है? इससे पता लगता है कि केवल जीवित कोशिकाओं में ही परासरण द्वारा जल अवशोषण की क्षमता होती है न कि मृत कोशिकाओं में।
कोशिका भित्ति पौधों, कवक तथा बैक्टीरिया की कोशिकाओं को अपेक्षाकृत कम तनु विलयन (अल्पपरासरण दाबी विलयन) में बिना फटे बनाए रखती है। ऐसे माध्यम से कोशिका परासरण विधि द्वारा पानी लेती है। कोशिका फूल जाती है और कोशिका भित्ति के ऊपर दबाव डालती है। कोशिका भित्ति भी फूली हुई कोशिका के प्रति समान रूप से दबाव डालती है। कोशिका भित्ति के कारण पादप कोशिकाएँ परिवर्तनीय माध्यम को जंतु कोशिका की अपेक्षा आसानी से सहन कर सकती है।
5.2.3 केंद्रक
आपको याद होगा कि हमने प्याज की झिल्ली की अस्थायी स्लाइड बनाई थी। हमने इस झिल्ली पर आयोडीन की बूँद डाली थी। क्यों? यदि हम बिना आयोडीन के स्लाइड देखें तो हम क्या देखेंगे? प्रयत्न करो और देखो कि क्या अंतर है। जब हमने आयोडीन का घोल डाला तो क्या प्रत्येक कोशिका समान रूप से रंगीन हो गई?
कोशिका के विभिन्न भाग रासायनिक संघटन के आधार पर विभिन्न रंगों से रँगे जाते हैं। कुछ क्षेत्र अधिक गहरे रंग के प्रतीत होते हैं तथा कुछ कम। कोशिका को रँगने के लिए हम आयोडीन विलयन के अतिरिक्त सैफ्रानिन अथवा मेथलीन ब्लू विलयन का भी उपयोग कर सकते हैं।
हमने प्याज की कोशिका को देखा है; आओ, अब हम अपने शरीर से ली गई कोशिकाओं को देखें।
क्रियाकलाप 5.7
-
काँच की एक स्लाइड लो और उस पर एक बूँद पानी रखो। आइसक्रीम खाने वाले चम्मच से अपने गाल के अंदर की खाल को धीरे से खुरचो। क्या चम्मच पर कोई वस्तु चिपक गई है? सूई की सहायता से इसे स्लाइड पर समान रूप से फैला कर रखो। इसे रँगने के लिए एक बूँद मेथलीन ब्लू की डालें। सूक्ष्मदर्शी द्वारा अवलोकन के लिए स्लाइड तैयार है। इस पर कवर स्लिप रखना ना भूलें।
-
हम क्या देखते हैं? कोशिकाओं की आकृति कैसी है? इस आकृति को एक पेपर (कागज) पर बनाएँ।
-
क्या आप कोशिका के मध्य में एक गहरे रंग वाली गोलाकार अथवा अंडाकार, डॉट की तरह की संरचना देख रहे हैं? इस संरचना को केंद्रक कहते हैं। क्या इसी प्रकार की संरचना प्याज की झिल्ली में भी थी?
केंद्रक के चारों ओर दोहरे परत का एक स्तर होता है जिसे केंद्रक झिल्ली कहते हैं। केंद्रक झिल्ली में छोटे-छोटे छिद्र होते हैं। इन छिद्रों के द्वारा केंद्रक के अंदर का कोशिकाद्रव्य केंद्रक के बाहर जा पाता है। कोशिकाद्रव्य के विषय में हम अनुभाग 5.2.4 में पढ़ेंगे।
केंद्रक में क्रोमोसोम होते हैं जो कोशिका विभाजन के समय छड़ाकार दिखाई पड़ते हैं। क्रोमोसोम में आनुवांशिक गुणों की जो सूचना होती है वो माता-पिता से DNA (डिऑक्सी राइबो न्यूक्लीक अम्ल) अणु के रूप में अगली संतति में जाते हैं। क्रोमोसोम DNA तथा प्रोटीन के बने होते हैं। DNA अणु में कोशिका के निर्माण व संगठन की सभी आवश्यक सूचनाएँ होती हैं। DNA के क्रियात्मक खंड को जीन कहते हैं। जो कोशिका विभाजित नहीं हो रही होती है उसमें यह DNA क्रोमैटिन पदार्थ के
रूप में विद्यमान रहता है। क्रोमैटिन पदार्थ धागे की तरह की रचनाओं के एक जाल का पिंड होता है। जब कभी भी कोशिका विभाजित होने वाली होती है, तब यह क्रोमोसोम में संगठित हो जाता है।
कुछ जीवों में कोशिकीय जनन में केंद्रक महत्वपूर्ण भूमिका निभाता है। इस प्रक्रिया में एक अकेली कोशिका विभाजित होकर दो नयी कोशिकाएँ बनाती हैं। यह कोशिका के विकास व परिपक्वन को निर्धरित करता है तथा साथ ही सजीव कोशिका की रासायनिक क्रियाओं को भी निर्देशित करता है।
बैक्टीरिया जैसे कुछ जीवों में कोशिका का केंद्रकीय क्षेत्र बहुत कम स्पष्ट होता है क्योंकि इसमें केंद्रक झिल्ली नहीं होती। ऐसे अस्पष्ट केंद्रक क्षेत्र में केवल क्रोमैटिन पदार्थ होता है। ऐसे क्षेत्र को केंद्रकाय कहते हैं। ऐसे जीव जिसकी कोशिकाओं में केंद्रक झिल्ली नहीं होती उन्हें प्रोकैरियोट (प्रो-आदि अथवा पूर्व; कैरियोट = कैरियोन = केंद्रक)। जिन जीवों की कोशिकाओं में केंद्रक झिल्ली होती है उन्हें यूकैरियोट कहते हैं।
प्रोकैरियोटी कोशिकाओं (चित्र 5.4) में और भी अन्य अधिकांश द्रव्य अंगक नहीं होते हैं जो कि यूकैरियोटी कोशिकाओं में होते हैं। ऐसे अंगकों के अनेक कार्य भी कोशिका द्रव्य के असंगठित भागों द्वारा ही किए जाते हैं (अनुभाग 5.2.4 पढ़ें)। प्रकाश संश्लेषी बैक्टीरिया में क्लोरोफिल झिल्लीदार पुटिका (थैले की तरह की संरचना) के साथ होता है जबकि यूकैरियोटी कोशिकाओं में क्लोरोफिल प्लैस्टिड में होता है (अनुभाग 5.2.5 देखें)।
चित्र 5.4: प्रोकैरियोटी कोशिका
5.2.4 कोशिका द्रव्य
जब हमने प्याज की झिल्ली तथा मनुष्य के गाल की कोशिकाओं की स्लाइड को देखा, तब हमें प्रत्येक कोशिका में एक बड़ा क्षेत्र दिखा जो कोशिका झिल्ली से घिरा हुआ था। इस क्षेत्र में बहुत हलका धब्बा था। इसे कोशिका द्रव्य कहते हैं। प्लैज्मा झिल्ली के अंदर कोशिका द्रव्य एक तरल पदार्थ है। इसमें बहुत से विशिष्ट कोशिका के घटक होते हैं जिन्हें कोशिक का अंगक कहते हैं। प्रत्येक अंगक कोशिका के लिए विशिष्ट कार्य करते हैं। कोशिका द्रव्य तथा केंद्रक दोनों को मिलाकर जीवद्रव्य कहते हैं।
कोशिका अंगक झिल्ली युक्त होते हैं। प्रोकैरियोटी कोशिकाओं में वास्तविक केंद्रक के अतिरिक्त झिल्ली युक्त अंगक भी नहीं होते। जबकि यूकैरियोटी कोशिकाओं में केंद्रकीय झिल्ली तथा झिल्ली युक्त अंगक होते हैं।
झिल्ली की सार्थकता वाइरस के उदाहरण से स्पष्ट कर सकते हैं। वाइरस में किसी भी प्रकार की झिल्ली नहीं होती और इसलिए इसमें जीवन के गुण तब तक लक्षित नहीं होते जब तक कि यह किसी सजीव के शरीर में प्रविष्ट करके कोशिका की मशीनरी का उपयोग कर अपना बहुगुणन नहीं कर लेता।
5.2.5 कोशिका अंगक
प्रत्येक कोशिका के चारों ओर अपनी झिल्ली होती है जिससे कि उसमें स्थित पदार्थ बाह्य पर्यावरण से अलग रहे। बड़ी तथा जटिल कोशिकाओं, जिसमें बहुकोशिक जीवों की कोशिकाएँ भी शामिल हैं, को भी उपापचयी क्रियाओं की बहुत आवश्यकता होती है जिससे कि वे जटिल संरचना तथा कार्य को सहारा दे सकें। इन विभिन्न प्रकार की उपापचयी क्रियाओं को अलग-अलग रखने के लिए, ये कोशिकाएँ झिल्लीयुक्त छोटी-छोटी संरचनाओं (अंगक) का उपयोग करती हैं। यह यूकैरियोटी कोशिकाओं का एक ऐसा गुण है जो उन्हें प्रोकैरियोटी कोशिकाओं से अलग करता है। इनमें से कुछ अंगक केवल इलेक्ट्रॉन सूक्ष्मदर्शी से ही देखे जा सकते हैं।
हमने पिछले अनुभाग में केंद्रक के विषय में पढ़ा है। अंतर्द्रव्यी जालिका, गॉल्जी उपकरण, लाइसोसोम, माइटोकॉन्ड्रिया तथा प्लैस्टिड; कोशिका अंगकों के महत्वपूर्ण उदाहरण हैं जिन पर हम विचार करेंगे। ये इसलिए महत्वपूर्ण हैं क्योंकि ये कोशिकाओं के बहुत निर्णायक कार्य करते हैं।
5.2.5 (i) अंतर्द्रव्यी जालिका (ER)
अंतर्द्रव्यी जालिका झिल्ली युक्त नलिकाओं तथा शीट का एक बहुत बड़ा तंत्र है। ये लंबी नलिका अथवा गोल या आयताकार थैलों (पुटिकाओं) की तरह दिखाई देती हैं। अंतर्द्रव्यी जालिका की रचना भी प्लैज्मा झिल्ली के समरूप होती है। अंतर्द्रव्यी जालिका दो प्रकार की होती है: खुरदरी अंतर्द्रव्यी जालिका (RER) तथा चिकनी अंतर्द्रव्यी जालिका (SER)। RER सूक्ष्मदर्शी से देखने पर खुरदरी दिखाई पड़ती है क्योंकि इस पर राइबोसोम लगे होते हैं। राइबोसोम पर प्रोटीन संश्लेषित होती है। RER तैयार प्रोटीन को आवश्यकतानुसार $\mathrm{ER}$ के द्वारा कोशिका के अन्य भागों में भेज देता है। SER वसा अथवा लिपिड अणुओं के बनाने में सहायता करती है। यह कोशिकीय क्रिया के लिए बहुत महत्वपूर्ण है। कुछ प्रोटीन तथा वसा कोशिका झिल्ली को बनाने में सहायता करते हैं। इस प्रक्रिया को झिल्ली जीवात्-जनन कहते हैं। कुछ अन्य प्रोटीन तथा वसा, एंजाइम एवं हार्मोन की भाँति कार्य करते हैं। यद्यपि विभिन्न कोशिकाओं में $\mathrm{ER}$ भिन्न रूपों में दिखाई देती है परंतु सदैव एक जालिका तंत्र का निर्माण करती है।
चित्र 5.5 : जंतु कोशिका
इस प्रकार $\mathrm{ER}$ का एक कार्य कोशिकाद्रव्य के विभिन्न क्षेत्रों के मध्य अथवा कोशिकाद्रव्य के विभिन्न क्षेत्रों तथा केंद्रक के मध्य पदार्थों (मुख्यतः प्रोटीन) के परिवहन के लिए नलिका के रूप में कार्य करना है। ER कोशिका की कुछ जैव रासायनिक क्रियाओं के लिए कोशिका द्रव्यी ढाँचे का कार्य भी करती है। एक वर्ग के जंतुओं, जिन्हें कशेरुकी भी कहते हैं (अध्याय-7 देखें), के यकृत की कोशिकाओं में SER विष तथा दवा को निराविषीकरण करने में महत्वपूर्ण भूमिका निभाते हैं।
5.2.5 (ii) गॉल्जी उपकरण
कैमिलो गॉल्जी द्वारा वर्णित गॉल्जी उपकरण झिल्ली युक्त चपटी पुटिकाओं का एक तंत्र है जो एक-दूसरे के ऊपर समानांतर रूप से सजी रहती है जिन्हें
कुंडिका कहते हैं। इन झिल्लियों का संपर्क ER झिल्लियों से होता है और इसलिए जटिल कोशिकीय झिल्ली तंत्र के दूसरे भाग को बनाती है।
चित्र 5.6 : पादप कोशिका
$\mathrm{ER}$ में संश्लेषित पदार्थ गॉल्जी उपकरण में पैक किए जाते हैं ओर उन्हें कोशिका के बाहर तथा अंदर विभिन्न क्षेत्रों में भेज दिया जाता है। इस कार्य में शामिल हैं पुटिका में पदार्थों का संचयन, रूपांतरण तथा बंद करना। कुछ परिस्थिति में गॉल्जी उपकरण में सामान्य शक्कर से जटिल शक्कर बनती है। गॉल्जी उपकरण के द्वारा लाइसोसोम को भी बनाया जाता है।
5.2 .5 (iii) लाइसोसोम
संरचनात्मक दृष्टि से, लाइसोसोम में झिल्ली से घिरी हुई संरचना होती है जिनमें पाचक एंजाइम होते हैं। RER इन एंजाइमों को बनाते हैं।
लाइसोसोम कोशिका का अपशिष्ट निपटाने वाला तंत्र है। ये बाहरी पदार्थ एवं कोशिका अंगकों के टूटे-फूटे भागों को पाचित करके कोशिका को साफ करते हैं। कोशिका के अंदर आने वाले बाहरी पदार्थ जैसे बैक्टीरिया अथवा भोजन तथा पुराने अंगक लाइसोसोम में चले जाते हैं जो उन्हें छोटे-छोटे टुकड़ों में तोड़ देते हैं। लाइसोसोम में बहुत शक्तिशाली पाचनकारी एंजाइम होते हैं जो जटिल पदार्थों को सरल पदार्थों में तोड़ते हैं। कोशिकीय चयापचय (metabolism) में व्यवधान के कारण जब कोशिका क्षतिग्रस्त या मृत हो जाती है, तो लाइसोसोम फट जाते हैं और एंजाइम अपनी ही कोशिकाओं को पाचित कर देते हैं इसलिए लाइसोसोम को कोशिका की ‘आत्मघाती थैली’ भी कहते हैं।
के सेंट मेटिओ के अस्पताल में अध्ययन जारी रखा। उस समय उनकी सारी खोज तंत्रिका तंत्र से संबंधित थी। 1872 में उन्होंने एबियाटेग्रेसो के एक दीर्घकालिक रोग के अस्पताल में मुख्य चिकित्सा पदाधिकारी का पदभार ग्रहण किया। उन्होंने सबसे पहले अपनी खोज इस अस्पताल के किचन में तंत्रिका तंत्र पर की। उन्होंने इस छोटी-सी किचन को प्रयोगशाला बना लिया था। उनका सबसे महत्वपूर्ण कार्य यह था कि उन्होंने अकेली तंत्रिका तथा कोशिका संरचनाओं को अभिरंगित करने की क्रांतिकारी विधि प्रदान की। इस विधि को “ब्लैक रिएक्शन” के नाम से जाना गया। इस विधि में उन्होंने सिल्वर नाइट्रेट के तनु घोल का उपयोग किया था और विशेषतः यह कोशिकाओं की कोमल शाखाओं की प्रक्रियाओं का मार्ग पता लगाने में महत्वपूर्ण था। सारा जीवन वे इसी दिशा में कार्य करते रहे और इस विधि में सुधार करते रहे। गॉल्जी ने अपने शोध के लिए उच्चतम उपाधि तथा पुरस्कार प्राप्त किए। सन् 1906 में इन्हें सैंटियागो रैमोनी कजाल के साथ संयुक्त रूप से तंत्रिका तंत्र की संरचना कार्य के लिए नोबेल पुरस्कार से सम्मानित किया गया।
5.2.5 (iv) माइटोकॉन्ड्रिया
माइटोकॉन्ड्रिया कोशिका का बिजलीघर है। माइटोकॉन्ड्रिया दोहरी झिल्ली की बनी होती है। बाहरी झिल्ली छिद्रित होती है। भीतरी झिल्ली बहुत अधिक वालित होती है। ये वलय ATP-बनाने वाली रासायनिक क्रियाओं के क्षेत्र को बड़ा बनाती हैं। जीवन के लिए आवश्यक विभिन्न रासायनिक क्रियाओं को करने के लिए माइटोकॉन्ड्रिया ATP (ऐडिनोसिन ट्राइफॉस्फेट) के रूप में ऊर्जा प्रदान करते हैं। ATP कोशिका की ऊर्जा है। शरीर नए रासायनिक यौगिकों को बनाने तथा यांत्रिक कार्य के लिए ATP में संचित ऊर्जा का उपयोग करता है।
माइटोकॉन्ड्रिया बहुत अद्भुत अंगक है क्योंकि इसमें उसका अपना DNA तथा राइबोसोम होते हैं। अतः माइटोकॉन्ड्रिया अपना कुछ प्रोटीन स्वयं बनाते हैं।
5.2.5 (v) प्लैस्टिड
प्लैस्टिड केवल पादप कोशिकाओं में स्थित होते हैं। प्लैस्टिड दो प्रकार के होते हैं: क्रोमोप्लास्ट (रंगीन प्लैस्टिड) तथा ल्यूकोप्लास्ट (श्वेत तथा रंगहीन प्लैस्टिड)। जिस क्रोमोप्लास्ट में क्लोरोफिल वर्णक होता है उसे क्लोरोप्लास्ट कहते हैं। पौधों में क्लोरोप्लास्ट प्रकाश संश्लेषण के लिए बहुत आवश्यक है। क्लोरोप्लास्ट में क्लोरोफिल के अतिरिक्त विभिन्न पीले अथवा नारंगी रंग के वर्णक भी होते हैं। ल्यूकोप्लास्ट प्राथमिक रूप से अंगक है जिसमें स्टार्च, तेल तथा प्रोटीन जैसे पदार्थ संचित होते हैं।
क्लोरोप्लास्ट की भीतरी रचना में बहुत-सी झिल्ली वाली परतें होती हैं जो स्ट्रोमा में स्थित होती हैं। प्लैस्टिड बाह्य रचना में माइटोकॉन्ड्रिया की तरह होते हैं। माइटोकॉन्ड्रिया की तरह प्लैस्टिड में भी अपना DNA तथा राइबोसोम होते हैं।
5.2.5 (vi) रसधानियाँ
रसधानियाँ ठोस अथवा तरल पदार्थों की संग्राहक थैलियाँ हैं। जंतु कोशिकाओं में रसधानियाँ छोटी होती हैं जबकि पादप कोशिकाओं में रसधानियाँ बहुत बड़ी होती हैं। कुछ पौधों की कोशिकाओं की केंद्रीय रसधानी की माप कोशिका के आयतन का $50 %$ से $90 %$ तक होता है।
पादप कोशिकाओं की रसधानियों में कोशिका द्रव्य भरा रहता है और ये कोशिकाओं को स्फीति तथा कठोरता प्रदान करती हैं। पौधों के लिए आवश्यक बहुत से पदार्थ रसधानी में स्थित होते हैं। ये अमीनो अम्ल, शर्करा, विभिन्न कार्बनिक अम्ल तथा कुछ प्रोटीन हैं। एककोशिक जीवों, जैसे अमीबा, की खाद्य रसधानी में उनके द्वारा उपभोग में लाए गए खाद्य पदार्थ होते हैं। कुछ एककोशिक जीवों में विशिष्ट रसधानियाँ अतिरिक्त जल तथा कुछ अपशिष्ट पदार्थों को शरीर से बाहर निकालने में महत्वपूर्ण भूमिकाएँ निभाती हैं।
प्रत्येक कोशिका की अपनी एक संरचना होती है, जिसके द्वारा वे विशिष्ट कार्य जैसे श्वसन, पोषण तथा अपशिष्ट पदार्थों का उत्सर्जन अथवा नई प्रोटीन बनाने में सहायता करते हैं। ऐसा उनकी झिल्ली तथा अंगकों की विशिष्ट संरचना के कारण संभव हो पाता है।
अतः कोशिका सजीवों की एक मूलभूत संरचनात्मक इकाई है। यह जीवन की एक मूलभूत क्रियात्मक इकाई भी है।
कोशिका विभाजन
जीवधारियों में वद्धि हेतु नई कोशिकाएं बनती हैं जिससे पुरानी मृत एवं क्षतिग्रस्त कोशिकाओं का प्रतिस्थापन और प्रजनन हेतु युग्मक बनते हैं। नई कोशिकाओं के बनने की प्रक्रिया को कोशिका विभाजन कहते हैं। सूत्री विभाजन और अर्ध सूत्री विभाजन नामक दो मुख्य प्रकार की कोशिका विभाजन की प्रक्रिया है।
कोशिका विभाजन की प्रक्रिया जिससे अधिकतर कोशिकाएं वृद्धि हेतु विभाजित होती हैं उसे सूत्री
चित्र 5.7 : समसूत्री विभाजन
विभाजन कहते हैं। इस प्रक्रिया में प्रत्येक कोशिका जिसे मातृ कोशिका भी कह सकते हैं, विभाजित होकर दो समरूप संतति कोशिकाएं बनाती हैं (चित्र 5.7)। संतति कोशिकाओं में गुणसुत्रों की संख्या मातृकोशिका के समान होती है। यह जीवों में वृद्धि एवं ऊतकों के मरम्मत में सहायता करती है।
जंतुओं और पौधों के प्रजनन अंगों अथवा ऊतकों की विशेष कोशिकाएं विभाजित होकर युग्मक बनाती है जो निषेचन के पश्चात् संतति निर्माण करती है। यह एक अलग प्रकार का विभाजन है जिसे अर्धसूत्रण कहते हैं जिसमें क्रमशः दो विभाजन होते हैं। जब कोशिका अर्ध सूत्रण द्वारा विभाजित होती है तो इससे दो की जगह चार नई कोशिकाएं बनती हैं (चित्र 5.8)। नई कोशिकाओं में मातृ कोशिकाओं की तुलना में गुणसूत्रों की संख्या आधी होती है। क्या आप सोच सकते हैं कि संतति कोशिकाओं में गुणसूत्रों की संख्या क्यों आधी हो गई है?
चित्र 5.8 : अर्धसूत्री विभाजन
आपने क्या सीखा
-
कोशिका जीवन की मूलभूत संरचनात्मक इकाई है।
-
कोशिका के चारों ओर प्लैज्मा झिल्ली होती है। ये झिल्लियाँ लिपिड तथा प्रोटीन की बनी होती हैं।
-
कोशिका झिल्ली कोशिका का सक्रिय भाग है। यह पदार्थों की गति को कोशिका के भीतर तथा बाहरी वातावरण से नियमित करती है।
-
पादप कोशिका में कोशिका झिल्ली के चारों ओर एक कोशिका भित्ति होती है। कोशिका भित्ति सेल्यूलोज की बनी होती है।
-
पादप की कोशिकाओं में स्थित कोशिका भित्ति फंजाई तथा बैक्टीरिया को अल्प परासरण दाबी घोल (माध्यम) में बिना फटे जीवित रहने देती है। यूकैरियोट में केंद्रक दोहरी झिल्ली द्वारा कोशिकाद्रव्य से अलग होता है। यह कोशिका की जीवन प्रक्रियाओं को निर्देशित करता है।
-
ER अंतःकोशिकीय परिवहन तथा उत्पादक सतह के रूप में कार्य करता है।
-
गॉल्जी उपकरण झिल्ली युक्त पुटिकाओं का स्तंभ है। यह कोशिका में बने पदार्थों का संचयन, रूपांतरण तथा पैकेजिंग करता है।
-
अधिकांश पादप कोशिकाओं में झिल्ली युक्त अंगक जैसे प्लैस्टिड होते हैं। ये दो प्रकार के होते हैं - क्रोमोप्लास्ट तथा ल्यूकोप्लास्ट।
-
क्रोमोप्लास्ट जिसमें क्लोरोफिल होता है उन्हें क्लोरोप्लास्ट कहते हैं। ये प्रकाश संश्लेषण करते हैं।
-
ल्यूकोप्लास्ट का प्राथमिक कार्य संचय करना है।
-
अधिकांश परिपक्व पादप कोशिकाओं में एक बड़ी केंद्रीय रसधानी होती है। यह कोशिका की स्फीति को बनाए रखती है और यह अपशिष्ट पदार्थों सहित महत्वपूर्ण पदार्थों का संचय करती है।
-
प्रोकैरियोटी कोशिकाओं में कोई भी झिल्ली युक्त अंगक नहीं होता। उनके क्रोमोसोम के स्थान पर न्यूकलीक अम्ल होता है और उनमें केवल छोटे राइबोसोम अंगक के रूप में होते हैं।
-
जीवधारियों में कायिक वृद्धि हेतु कोशिकाएं विभाजित होती हैं।