अध्याय 6 वैद्युतचुंबकीय प्रेरण
6.1 भूमिका
विद्युत तथा चुंबकत्व काफी लंबे समय तक अलग-अलग तथा असंबद्ध परिघटनाएँ मानी जाती रही हैं। उन्नीसवीं शताब्दी के प्रारंभिक दशकों में ऑर्स्टेड, ऐम्पियर तथा कुछ अन्य वैज्ञानिकों द्वारा विद्युत धारा पर किए गए प्रयोगों ने यह प्रमाणित किया कि विद्युत तथा चुंबकत्व परस्पर संबंधित हैं। उन्होंने ज्ञात किया कि गतिमान विद्युत आवेश चुंबकीय क्षेत्र उत्पन्न करते हैं। उदाहरण के लिए, विद्युत धारा अपने पास रखी हुई एक चुंबकीय सुई को विक्षेपित करती है। इससे एक स्वाभाविक प्रश्न उत्पन्न होता है - क्या इसका विपरीत प्रभाव संभव है? क्या गतिमान चुंबक विद्युत धारा उत्पन्न कर सकते हैं? क्या प्रकृति विद्युत तथा चुंबकत्व के बीच इस प्रकार के संबंध की अनुमति देती है? इसका उत्तर एक निश्चित ‘हाँ’ है। लगभग सन 1830 में माइकल फैराडे द्वारा इंग्लैंड में तथा जोसेफ हेनरी द्वारा अमेरिका में किए गए प्रयोगों ने स्पष्ट रूप से दर्शाया कि परिवर्तनशील चुंबकीय क्षेत्र बंद कुंडलियों में विद्युत धारा उत्पन्न करता है। इस अध्याय में हम परिवर्तनशील चुंबकीय क्षेत्रों से संबंधित परिघटनाओं के बारे में अध्ययन करेंगे तथा इनमें निहित सिद्धांतों को समझेंगे। वह परिघटना जिसमें चुंबकीय क्षेत्रों द्वारा विद्युत धारा उत्पन्न होती है, उसे उचित रूप से ही वैद्युतचुंबकीय प्रेरण कहते हैं।
जब फैराडे ने प्रथम बार अपनी इस खोज को सार्वजनिक किया कि ‘चालक तार से बने लूप तथा दंड चुंबक के बीच सापेक्ष गति कराने पर लूप में क्षीण धारा उत्पन्न होती है’, तब उनसे पूछा गया कि ‘इसका क्या उपयोग है’? फैराडे का उत्तर था, ‘नवजात शिशु का क्या उपयोग होता है?’
वैद्युतचुंबकीय प्रेरण केवल सैद्धांतिक या शैक्षिक रूप से ही उपयोगी परिघटना नहीं है वरन व्यावहारिक दृष्टि से विद्युत न हो तो विद्युत प्रकाश न हो, ट्रेन न हो, टेलीफ़ोन न हो और कंप्यूटर न हो। फैराडे एवं हेनरी के इन पुरोगामी (pioneering) प्रयोगों ने ही आधुनिक जनित्रों एवं ट्रांसफार्मरों के विकास को संभव बनाया। आज की सभ्यता के विकास में वैद्युतचुंबकीय प्रेरण की खोज ने एक अहम भूमिका निभाई है।
6.2 फैराडे एवं हेनरी के प्रयोग
वैद्युतचुंबकीय प्रेरण की खोज तथा उसकी समझ फैराडे एवं हेनरी द्वारा किए गए अनेक प्रयोगों पर आधारित है। हम उनमें से कुछ प्रयोगों का वर्णन यहाँ करेंगे।
प्रयोग 6.1
चित्र 6.1 में धारामापी
प्रयोग 6.2
चित्र 6.2 में दंड चुंबक को बैटरी से जुड़ी हुई एक दूसरी कुंडली
जोसेफ हेनरी [1797 - 1878]
जोसेफ हेनरी अमेरिकी प्रायोगिक भौतिकशास्त्री, प्रिंस्टन विश्वविद्यालय में प्रोफ़ेसर तथा स्मिथसोनियन इंस्टीट्यूशन के प्रथम निदेशक थे। लोहे के ध्रुवों के चारों ओर पृथक्कृत दंड चुंबक को स्थिर रखकर तथा इसके स्थान पर तार की कुंडलियाँ लपेटकर उन्होंने विद्युत चुंबकों में महत्वपूर्ण सुधार किए एवं एक विद्युत चुंबकीय मोटर तथा एक नए दक्ष टेलीग्राफ़ का आविष्कार किया। उन्होंने स्वप्रेरण की खोज की तथा इस बात का पता लगाया कि कैसे एक परिपथ में प्रवाहित धारा दूसरे परिपथ में धारा प्रेरित करती है। फिर से विक्षेप दर्शाता है, लेकिन इस बार यह विक्षेप विपरीत दिशा में होता है। यह विक्षेप तभी तक रहता है जब तक कुंडली
- जब भी कुंडली या ‘लूप’ शब्द का उपयोग किया जाता है तो यह मान लिया जाता है कि वे चालक पदार्थों से बने हैं तथा इन्हें जिन तारों से बनाया गया है उन पर अवरोधक पदार्थों की परत चढ़ी है।
चित्र 6.2 धारायुक्त कुंडली
प्रयोग 6.3
उपरोक्त दोनों प्रयोगों में चुंबक तथा कुंडली के बीच तथा दो कुंडलियों के बीच सापेक्ष गति शामिल है। एक अन्य प्रयोग द्वारा फैराडे ने दर्शाया कि यह सापेक्ष गति कोई अति आवश्यक अनिवार्यता नहीं है। चित्र 6.3 में दो कुंडलियाँ
यह देखा जाता है कि दाब-कुंजी
को लगातार दबाकर रखा जाए तो धारामापी में कोई विक्षेप नहीं होता। जब कुंजी को छोड़ा जाता है तो फिर से एक क्षणिक विक्षेप देखा जाता है, लेकिन यह विक्षेप विपरीत दिशा में होता है। यह भी देखा गया है कि यदि कुंडलियों में उनके अक्ष के अनुदिश एक लोहे की छड़ रख दी जाए तो विक्षेप नाटकीय रूप से बढ़ जाता है।
6.3 चुंबकीय फ्लक्स
फैराडे की विशाल अंतर्दृष्टि के कारण वैद्युतचुंबकीय प्रेरण पर उनके द्वारा किए गए प्रयोगों की श्रृंखला की व्याख्या करने वाले एक सरल गणितीय संबंध की खोज करना संभव हुआ। तथापि, इसके पहले कि हम वह नियम बताएँ तथा उसकी प्रशंसा में कुछ कहें, हमें चुंबकीय फ्लक्स
यदि क्षेत्रफल
जहाँ पर
यदि चित्र 6.5 में दर्शाए अनुसार किसी सतह के विभिन्न भागों पर चुंबकीय क्षेत्र के परिमाण तथा दिशाएँ भिन्न-भिन्न हों, तो सतह से होकर गुजरने वाला चुंबकीय फ्लक्स होगा
जहाँ ‘सभी’ का अर्थ है सतह के सभी सूक्ष्म क्षेत्र अवयवों
6.4 फैराडे का प्रेरण का नियम
प्रायोगिक प्रेक्षणों के आधार पर फैराडे इस निष्कर्ष पर पहुँचे कि जब किसी कुंडली में चुंबकीय फ्लक्स समय के साथ परिवर्तित होता है तब कुंडली में विद्युत वाहक बल प्रेरित होता है। अनुभाग 6.2 में चर्चित प्रायोगिक प्रेक्षणों की इस अवधारणा का उपयोग करके व्याख्या कर सकते हैं।
प्रयोग 6.1 में कुंडली
चित्र 6.4 एकसमान चुंबकीय क्षेत्र
चित्र 6.5 वे अवयव क्षेत्र पर चुंबकीय क्षेत्र
- नोट कीजिए कि विद्युत चुंबक के समीप रखे सुग्राही विद्युत यंत्र विद्युत चुंबक को ऑन
या ऑफ़ (OFF) करने पर उत्पन्न होने वाली धाराओं के कारण क्षतिग्रस्त हो जाते हैं।
माइकल फैराडे
[1791-1867]
माइकल फैराडे ने विज्ञान के क्षेत्र में महत्वपूर्ण योगदान किया, उदाहरण के लिए वैद्युतचुंबकीय प्रेरण की खोज, विद्युत अपघटन के नियम, बेंजीन तथा यह तथ्य कि ध्रुवण तल विद्युत क्षेत्र में घूर्णन कर सकता है। विद्युत मोटर, विद्युत जनित्र तथा ट्रांसफार्मर की खोज का श्रेय भी फैराडे को ही जाता है। उन्हें उन्नीसवीं शताब्दी का महानतम प्रयोगात्मक वैज्ञानिक माना जाता है। प्रेरण का नियम कहते हैं। इस नियम को निम्न प्रकार से अभिव्यक्त किया गया है।
प्रेरित विद्युत वाहक बल का परिमाण चुंबकीय फ्लक्स में समय के साथ होने वाले परिवर्तन की दर के बराबर होता है।
गणितीय रूप में प्रेरित विद्युत धारा बल को
ॠण चिह्न
पास-पास लपेटे हुए
बंद कुंडली में फेरों की संख्या
समीकरण (6.1) तथा (6.2), से हमें ज्ञात होता है कि फ्लक्स में परिवर्तन
6.5 लेंज का नियम तथा ऊर्जा संरक्षण
सन 1834 में जर्मन भौतिकविद हेनरिक फ्रेडरिच लेंज (1804-1865) ने एक नियम का निगमन किया जिसे लेंज का नियम के नाम से जाना जाता है। यह नियम प्रेरित विद्युत वाहक बल की ध्रुवता (दिशा) का स्पष्ट एवं संक्षिप्त रूप में वर्णन करता है। इस नियम का प्रकथन है-
प्रेरित विद्युत वाहक बल की ध्रुवता (polarity) इस प्रकार होती है कि वह उस दिशा में धारा प्रवाह प्रवृत्त करे जो उसे उत्पन्न करने वाले कारक (चुंबकीय क्षेत्र परिवर्तन) का विरोध करे।
समीकरण (6.3) में ऋण चिह्न इस प्रभाव को निरूपित करता है। अनुच्छेद 6.2.1 के प्रयोग 6.1 का निरीक्षण करके हम लेंज के नियम को समझ सकते हैं। चित्र 6.1 में हम देखते हैं कि दंड चुंबक का उत्तरी-ध्रुव बंद कुंडली की ओर ले जाया जा रहा है। जब दंड चुंबक का उत्तरी ध्रुव कुंडली की ओर गति करता है तब कुंडली में चुंबकीय फ्लक्स बढ़ता है। इस प्रकार कुंडली में प्रेरित धारा ऐसी दिशा में उत्पन्न होती है जिससे कि यह फ्लक्स के बढ़ने का विरोध कर सके। यह तभी संभव है जब चुंबक की ओर स्थित प्रेक्षक के सापेक्ष कुंडली में धारा वामावर्त दिशा में हो। ध्यान दीजिए, इस धारा से संबद्ध चुंबकीय आघूर्ण की ध्रुवता उत्तरी है जबकि इसकी ओर चुंबक का उत्तरी ध्रुव आ रहा हो। इसी प्रकार, यदि कुंडली में चुंबकीय फ्लक्स घटेगा। चुंबकीय फ्लक्स के इस घटने का विरोध करने के लिए कुंडली में प्रेरित धारा दक्षिणावर्त दिशा में बहती है तथा इसका दक्षिणी ध्रुव दूर हटते दंड चुंबक के उत्तरी ध्रुव की ओर होता है। इसके फलस्वरूप एक आकर्षण बल काम करेगा जो चुंबक की गति तथा इससे संबद्ध फ्लक्स के घटने का विरोध करेगा। उपरोक्त उदाहरण में यदि बंद लूप के स्थान पर एक खुला परिपथ उपयोग किया जाए तो क्या होगा? इस दशा में भी, परिपथ के खुले सिरों पर एक प्रेरित विद्युत वाहक बल उत्पन्न होगा। प्रेरित विद्युत वाहक बल की दिशा लेंज के नियम का उपयोग करके ज्ञात की जा सकती है।
(a)
(b)
चित्र 6.6 लेंज के नियम का चित्रण
चित्र 6.6 (a) तथा (b) पर विचार करें। ये प्रेरित धाराओं की दिशा को समझने के लिए एक सरल विधि सुझाते हैं। ध्यान दीजिए कि
इस विषय पर थोड़े से गंभीर चिंतन से हम लेंज के नियम की सत्यता को स्वीकार कर सकते हैं। माना कि प्रेरित विद्युत धारा की दिशा चित्र 6.6(a) में दर्शायी गई दिशा के विपरीत है। उस दशा में, प्रेरित धारा के कारण दक्षिणी ध्रुव पास आते हुए चुंबक के उत्तरी ध्रुव की ओर होगा। इसके कारण दंड चुंबक कुंडली की ओर लगातार बढ़ते हुए त्वरण से आकर्षित होगा। चुंबक को दिया गया हलका-सा धक्का इस प्रक्रिया को प्रारंभ कर देगा तथा बिना किसी ऊर्जा निवेश के इसका वेग एवं गतिज ऊर्जा सतत रूप से बढ़ती जाएगी। यदि ऐसा हो सके तो उचित प्रबंध द्वारा एक शाश्वत गतिक मशीन (perpetual motion machine) का निर्माण किया जा सकता है। यह ऊर्जा के संरक्षण नियम का उल्लंघन है और इसीलिए ऐसा नहीं हो सकता।
अब चित्र 6.6(a) में दर्शायी गई सही स्थिति पर विचार करें। इस स्थिति में दंड चुंबक प्रेरित विद्युत धारा के कारण एक प्रतिकर्षण बल का अनुभव करता है। इसलिए चुंबक को गति देने के लिए हमें कार्य करना पड़ेगा। हमारे द्वारा खर्च की गई ऊर्जा कहाँ गई? वह ऊर्जा प्रेरित धारा द्वारा उत्पन्न जूल ऊष्मन के रूप में क्षयित होती है।
6.6 गतिक विद्युत वाहक बल
किसी एकसमान, काल स्वतंत्र (time independent) चुंबकीय क्षेत्र में एक गतिमान ऋजु चालक पर विचार कीजिए। चित्र 6.10 में एक आयताकार चालक PQRS दर्शाया गया है जिसमें चालक
चित्र 6.10 भुजा
क्योंकि
जहाँ हमने
समीकरण (6.5) में दर्शाए गए गतिक विद्युत वाहक बल के व्यंजक को चालक
आवेश को
चूँकि प्रति इकाई आवेश पर किया गया कार्य ही विद्युत वाहक बल है, अतः
यह समीकरण छड़
दूसरी ओर, यह स्पष्ट नहीं होता है कि जब चालक स्थिर हो और चुंबकीय क्षेत्र परिवर्तित हो रहा हो तो इसमें
क्योंकि
6.7 प्रेरकत्व
एक कुंडली के निकट रखी दूसरी कुंडली में फ्लक्स परिवर्तन से अथवा उसी कुंडली में फ्लक्स परिवर्तन से, उस कुंडली में विद्युत धारा प्रेरित हो सकती है। ये दोनों स्थितियाँ अगले दो उपखंडों में अलग-अलग वर्णित की गई हैं। तथापि, इन दोनों स्थितियों में, कुंडली में फ्लक्स धारा के समानुपाती है। अर्थात्
इसके अतिरिक्त यदि समय के साथ कुंडली की ज्यामिति नहीं बदलती, तब
समीप-समीप लिपटे
इस संबंध में समानुपातिक स्थिरांक को प्रेरकत्व कहते हैं। हम देखेंगे कि प्रेरकत्व का मान कुंडली की ज्यामिति तथा उसके पदार्थ के नैज (intrinsic) गुणधर्मों पर निर्भर करता है। यह पक्ष धारिता की प्रकृति के समान है जो समांतर प्लेट संधारित्र के लिए प्लेट के क्षेत्रफल तथा प्लेट-पृथक्करण (ज्यामिति) तथा उनके बीच उपस्थित माध्यम के परावैद्युतांक
प्रेरकत्व एक अदिश राशि है। इसकी विमाएँ
6.7.1 अन्योन्य प्रेरकत्व
चित्र 6.12 में दर्शायी गई दो लंबी समाक्षी (co-axial) परिनालिकाओं (solenoids) जिनकी प्रत्येक की लंबाई
क्रमशः
जब
इन सरल समाक्षी परिनालिकाओं के लिए
जहाँ
चित्र 6.12 समान लंबाई
ध्यान दीजिए कि हमने यहाँ पर कोर-प्रभावों को नगण्य मान लिया है तथा चुंबकीय क्षेत्र
अब हम विपरीत स्थिति पर विचार करते हैं। परिनालिका
कहते हैं।
यहाँ पर
समीकरण (6.9) तथा समीकरण (6.10) का उपयोग करके हमें प्राप्त होता है
हमने यह समानता दीर्घ लंबाई की समाक्षी परिनालिकाओं के लिए दर्शायी है। तथापि, यह संबंध व्यापक रूप से सत्य है। नोट कीजिए कि यदि अंतःपरिनालिका बाह्य परिनालिका से बहुत छोटी होती (तथा बाह्य परिनालिका में ठीक प्रकार अंदर रखी होती) तब भी हम फ्लक्स ग्रंथिका
इसीलिए इस स्थिति में
उपरोक्त उदाहरण की व्याख्या हमने यह मान कर की है कि परिनालिकाओं के अंदर माध्यम वायु है। इसके स्थान पर यदि
यह जानना भी महत्वपूर्ण है कि कुंडलियों, परिनालिकाओं आदि के युग्म का अन्योन्य प्रेरकत्व उनके पृथक्करण एवं साथ-ही-साथ उनके सापेक्ष दिक्विन्यास (orientation) पर निर्भर है।
अब, अनुच्छेद 6.2 के प्रयोग 6.3 को स्मरण करें। उस प्रयोग में, जब भी कुंडली
तब समीकरण (6.8) से हमें प्राप्त होगा
समय के साथ परिवर्तनशील धाराओं के लिए
क्योंकि कुंडली
हमें प्राप्त होगा,
यह दर्शाता है कि किसी कुंडली में परिवर्ती धारा समीपस्थ कुंडली में विद्युत वाहक बल प्रेरित कर सकती है। प्रेरक विद्युत वाहक बल का परिमाण धारा परिवर्तन की दर तथा दोनों कुंडलियों के अन्योन्य प्रेरकत्व पर निर्भर है।
6.7.2 स्व-प्रेरकत्व
पिछले उप-परिच्छेद में हमने एक परिनालिका में बहने वाली धारा के कारण दूसरी परिनालिका में उत्पन्न होने वाले फ्लक्स के बारे में विचार किया। किसी एकल वियुक्त कुंडली में भी उसी कुंडली में धारा परिवर्तित करने पर कुंडली में होने वाले फ्लक्स परिवर्तन के कारण, विद्युत वाहक बल प्रेरित करना संभव है। इस परिघटना को स्व-प्रेरण कहते हैं। इस स्थिति में,
यहाँ समानुपातिक स्थिरांक
इस प्रकार, स्व-प्रेरित विद्युत वाहक बल सदैव कुंडली में किसी भी धारा परिवर्तन (बढ़ना या घटना) का विरोध करता है।
सरल ज्यामितियों से किसी परिपथ के लिए स्व-प्रेरकत्व की गणना करना संभव है। आइए एक लंबी परिनालिका के स्व-प्रेरकत्व की गणना करें, जिसके अनुप्रस्थ काट का क्षेत्रफल
यहाँ पर
यदि हम परिनालिका की अंतःधारा को
कुंडली का स्वप्रेरकत्व उसकी ज्यामितीय संरचना तथा माध्यम की चुंबकशीलता पर निर्भर है।
स्वप्रेरित विद्युत वाहक बल को विरोधी विद्युत वाहक बल (backemf) भी कहते हैं क्योंकि यह परिपथ में किसी भी धारा-परिवर्तन का विरोध करता है। भौतिक दृष्टि से स्व-प्रेरकत्व जड़त्व का कार्य करता है। यह यांत्रिकी में द्रव्यमान का विद्युतचुंबकीय अनुरूप है। अतः, धारा स्थापित करने के लिए, विरोधी विद्युत वाहक बल
यदि हम प्रतिरोधक क्षयों को नगण्य मान लें तथा केवल प्रेरणिक प्रभाव पर ही विचार करें, तब समीकरण (6.14) का उपयोग करने पर,
धारा
अतः, धारा I स्थापित करने में आवश्यक ऊर्जा होगी,
यह व्यंजक हमें
दो समीपस्थ कुंडलियों में साथ-साथ प्रवाहित होने वाली धाराओं की सामान्य स्थिति पर विचार करें। एक कुंडली के साथ संबद्ध फ्लक्स, स्वतंत्र रूप से विद्यमान दो फ्लक्सों के योग के बराबर होगा। समीकरण (6.7) निम्न रूप में रूपातंरित हो जाएगी।
यहाँ
अतः, फैराडे का नियम उपयोग करने पर,
6.8 प्रत्यावर्ती धारा जनित्र
चित्र 6.13 प्रत्यावर्ती धारा जनित्र।
विद्युत चुंबकीय प्रेरण परिघटना का प्रौद्योगिक रूप से कई प्रकार से उपयोग किया गया है। एक असाधारण तथा महत्वपूर्ण उपयोग प्रत्यावर्ती धारा (ac) उत्पादन है।
प्रत्यावर्ती धारा जनित्र के मूल अवयव चित्र 6.13 में दर्शाए गए हैं। इसमें एक कुंडली होती है जो रोटर शैफ्ट (roter shaft) पर
आरोपित होती है। कुंडली का घूर्णन अक्ष चुंबकीय क्षेत्र की दिशा के लंबवत है। कुंडली (जिसे आर्मेचर कहते हैं) को किसी एकसमान चुंबकीय क्षेत्र में किसी बाह्य साधन द्वारा यांत्रिक विधि से घूर्णन कराया जाता है। कुंडली के घूमने से, इसमें चुंबकीय फ्लक्स परिवर्तित होता है, जिससे कि कुंडली में एक विद्युत वाहक बल प्रेरित होता है। कुंडली के सिरों को सर्पी वलयों (slip rings) तथा ब्रुशों (brushes) की सहायता से एक बाह्य परिपथ से जोड़ा जाता है।
जब कुंडली को एकसमान कोणीय चाल
फैराडे के नियम से,
अतः, विद्युत वाहक बल का तात्क्षणिक मान है
यहाँ NBA
क्योंकि ज्या फलन (sine function) का मान +1 से -1 के बीच बदलता है, विद्युत वाहक बल का चिह्न या ध्रुवता समय के साथ परिवर्तित होता है। चित्र 6.14 से नोट कीजिए कि जब
चरण 2
चरण 1 आर्मेचर का तल चुंबकीय क्षेत्र के अभिलंबवत है
चरण 5
स्थिति
चित्र 6.14 एक चुंबकीय क्षेत्र में घूर्णन करते तार के लूप में एक प्रत्यावर्ती विद्युत वाहक बल उत्पन्न होता है।
क्योंकि धारा की दिशा आवर्ती रूप से परिवर्तित होती है इसलिए धारा को प्रत्यावर्ती धारा (ac) कहते हैं। क्योंकि
यहाँ,
ध्यान रखिए कि समीकरण (6.20) तथा (6.21) विद्युत वाहक बल का तात्क्षणिक मान बतलाते हैं तथा
व्यावसायिक जनित्रों में, आर्मेचर को घुमाने के लिए आवश्यक यांत्रिक ऊर्जा ऊँचाई से गिरते हुए पानी द्वारा प्राप्त की जाती है, उदाहरण के लिए, बाँधों द्वारा। इन्हें जल-विद्युत जनित्र (hydroelectric generator) कहते हैं। विकल्पतः, कोयला या अन्य स्रोतों का उपयोग करके, पानी को गर्म करके भाप पैदा करते हैं। उच्च दाब पर भाप को आर्मेचर को घुमाने के लिए प्रयोग में लाते हैं। इन्हें तापीय जनित्र (thermal generator) कहते हैं। कोयले के स्थान पर यदि नाभिकीय ईंधन का प्रयोग किया जाता है तो हमें नाभिकीय शक्ति प्राप्त होती है। आधुनिक जनित्र
सारांश
1. क्षेत्रफल
यहाँ
2. फैराडे के विद्युत चुंबकीय प्रेरण के नियम के अनुसार
यहाँ
3. लेंज के नियम के अनुसार, प्रेरित विद्युत वाहक बल की ध्रुवता इस प्रकार होती है कि वह उस दिशा में धारा प्रवाहित करे, जो उसी परिवर्तन का विरोध करे जिसके कारण उसकी उत्पत्ति हुई है। फैराडे द्वारा निष्पादित व्यंजक में ऋण चिह्न इसी बात का द्योतक है।
4. यदि एक
5. प्रेरकत्व, फ्लक्स बंधता तथा धारा का अनुपात है। इसका मान
6. किसी कुंडली (कुंडली 2) में धारा परिवर्तन निकट स्थित कुंडली (कुंडली 1) में प्रेरित विद्युत वाहक बल उत्पन्न कर सकता है। इस संबंध को
द्वारा व्यक्त करते हैं। यहाँ राशि
7. जब किसी कुंडली में धारा परिवर्तन होता है तो वह परिवर्तन कुंडली में एक विरोधी विद्युत वाहक बल को उत्पन्न करता है। इस स्व-प्रेरित विद्युत वाहक बल का मान निम्नलिखित समीकरण द्वारा व्यक्त किया जाता है :
यहाँ
8. किसी लंबी परिनालिका जिसकी क्रोड
यहाँ
9. किसी प्रत्यावर्ती धारा जनित्र में विद्युत चुंबकीय प्रेरण द्वारा यांत्रिक ऊर्जा को विद्युत ऊर्जा में रूपांतरित करते हैं। यदि
द्वारा व्यक्त किया जाता है। यहाँ हमने मान लिया है कि
राशि | प्रतीक | मात्रक | विमाएँ | समीकरण |
---|---|---|---|---|
चुंबकीय फ्लक्स | ||||
विद्युत वाहक बल (emf) | V ( वोल्ट) | |||
अन्योन्य प्रेरकत्व | ||||
स्व-प्रेरकत्व |
विचारणीय विषय
1. विद्युत एवं चुंबकत्व का एक-दूसरे के साथ घनिष्ठ संबंध है। उन्नीसवीं शताब्दी के प्रारंभ में आर्स्टेड, ऐम्पियर एवं अन्य द्वारा किए गए प्रयोगों ने सिद्ध कर दिया कि गतिमान आवेश (धारा) चुंबकीय क्षेत्र की उत्पत्ति करते हैं। कुछ समय पश्चात सन 1830 के आसपास फैराडे तथा हेनरी
द्वारा किए गए प्रयोगों ने स्पष्ट रूप से प्रदर्शित किया कि गतिमान चुंबक विद्युत धारा प्रेरित (उत्पन्न) करते हैं। गुरुत्वीय, विद्युत चुंबकीय, क्षीण तथा प्रबल नाभिकीय बल एक-दूसरे से संबंधित हैं?
2. किसी बंद परिपथ में, विद्युत धारा इस प्रकार उत्पन्न होती है जिससे कि यह परिवर्ती चुंबकीय फ्लक्स का विरोध कर सके। यह ऊर्जा संरक्षण के सिद्धांत के अनुरूप है। तथापि, एक खुले परिपथ में प्रेरित विद्युत वाहक बल इसके सिरों पर उत्पन्न होता है। यह फ्लक्स परिवर्तन से किस प्रकार संबंधित है।
3. अनुच्छेद 6.5 में गतिक विद्युत वाहक बल की विवेचना की गई है। इस अवधारणा का निष्पादन हम गतिमान आवेश पर लगने वाले लोरेंज़ बल का प्रयोग करते हुए फैराडे के नियम से भी स्वतंत्रतापूर्वक कर सकते हैं। तथापि, यदि आवेश स्थिर भी हों [तथा लोरेंज़ बल का