अध्याय 4 गतिमान आवेश और चुंबकत्व
4.1 भूमिका
2000 वर्ष से भी पहले विद्युत तथा चुंबकत्व दोनों ही के बारे में लोगों को ज्ञान था। फिर भी लगभग 200 वर्ष पूर्व, 1820 में यह स्पष्ट अनुभव किया गया कि इन दोनों में अटूट संबंध है। 1820 की ग्रीष्म ऋतु में, डच भौतिकविज्ञानी हैंस क्रिश्चियन ऑर्स्टेड ने, अपने एक भाषण के दौरान प्रयोग प्रदर्शित करते हुए देखा कि एक सीधे तार में विद्युत धारा प्रवाहित करने पर पास रखी हुई चुंबकीय सुई में सुस्पष्ट विक्षेप प्राप्त होता है। उन्होंने इस परिघटना पर शोध आरंभ किया। उन्होंने पाया कि चुंबकीय सुई तार के अभिलंबवत तल में तार की स्थिति के केंद्रतः वृत्त की स्पर्श रेखा के समांतर संरेखित होती है। इस स्थिति को चित्र 4.1(a) में दर्शाया गया है। पर यह देखने के लिए तार में पर्याप्त धारा प्रवाहित होनी चाहिए और चुंबकीय सुई तार के काफी निकट रखी होनी चाहिए ताकि पृथ्वी के चुंबकीय क्षेत्र की उपेक्षा की जा सके। यदि तार में धारा की दिशा विपरीत कर दी जाए तो चुंबकीय सुई भी घूम कर विपरीत दिशा में संरेखित हो जाती है [चित्र 4.1(b) देखिए]। तार में धारा का परिमाण बढ़ाने या सुई को तार के निकट लाने से चुंबकीय सुई का विक्षेप बढ़ जाता है। तार के चारों ओर यदि लौह चूर्ण छिड़कें तो इसके कण तार के चारों ओर संकेंद्री वृत्तों में व्यवस्थित हो जाते हैं [चित्र 4.1(c) देखिए]। इस परिघटना से ऑर्स्टेड ने निष्कर्ष निकाला कि गतिमान आवेश (धारा) अपने चारों ओर एक चुंबकीय क्षेत्र उत्पन्न करते हैं।
इसके पश्चात प्रयोगों की गति तीव्र हो गई। सन 1864 में विद्युत तथा चुंबकत्व के सर्वमान्य नियमों को जेम्स मैक्सवेल ने एकीकृत करके नए नियम बनाए और यह स्पष्ट अनुभव किया कि प्रकाश वास्तव में विद्युत चुंबकीय तरंगें हैं। हर्ट्ज़ ने रेडियो तरंगों की खोज की तथा 19 वीं शताब्दी
के अंत तक सर जे.सी. बोस तथा मार्कोनी ने इन तरंगों को उत्पन्न किया। 20 वीं शताब्दी में विज्ञान तथा प्रौद्योगिकी में आश्चर्यजनक प्रगति हुई है। यह प्रगति विद्युत चुंबकत्व के हमारे बढ़ते ज्ञान तथा विद्युत चुंबकीय तरंगों को उत्पन्न, प्रबर्धित, प्रेषित तथा संसूचित करने वाली युक्तियों की खोज के कारण हुई है।
(a)
(b)
(c)
चित्र 4.1 एक सीधे लंबे धारावाही तार के कारण उत्पन्न चुंबकीय क्षेत्र। तार, कागज़ के तल पर अभिलंबवत है। तार के चारों ओर चुंबकीय सुइयों की एक मुद्रिका बनाई गई है। चुंबकीय सुइयों का अभिविन्यास- (a) जब धारा कागज़ के तल से बाहर की ओर प्रवाहित होती है। (b) जब धारा कागज़ के तल से अंदर की ओर प्रवाहित होती है। (c) लौह चूर्ण कणों का तार के चारों ओर अभिविन्यास। सुइयों के काले सिरे उत्तरी ध्रुव प्रदर्शित करते हैं। यहाँ भू-चुंबकत्व के प्रभाव की
उपेक्षा की गई है।
इस अध्याय में हम यह देखेंगे कि चुंबकीय क्षेत्र किस प्रकार आवेशित
हैंस क्रिश्चियन ऑर्स्टेड (17771851) डेनमार्क के भौतिकविज्ञानी एवं रसायनज्ञ, कॉपेनहेगन में प्रोफ़ेसर थे। उन्होंने यह देखा कि किसी चुंबकीय सुई को जब एक ऐसे तार के पास रखा जाता है जिसमें विद्युत धारा प्रवाहित हो रही हो तो उसमें विक्षेप होता है। इस खोज ने वैद्युत एवं चुंबकीय प्रक्रमों के बीच संबंध का पहला आनुभविक प्रमाण प्रस्तुत किया। कणों; जैसे-इलेक्ट्रॉन, प्रोटॉन तथा विद्युत धारावाही तारों पर बल आरोपित करते हैं। हम यह भी सीखेंगे कि विद्युत धाराएँ किस प्रकार चुंबकीय क्षेत्र उत्पन्न करती हैं। हम यह देखेंगे कि साइक्लोट्रॉन में किस प्रकार कणों को अति उच्च ऊर्जाओं तक त्वरित किया जा सकता है। हम गैल्वेनोमीटर द्वारा विद्युतधाराओं एवं वोल्टताओं के संसूचन के विषय में भी अध्ययन करेंगे।
इस अध्याय तथा आगे आने वाले चुंबकत्व के अध्यायों में हम निम्नलिखित परिपाटी को अपनाएँगे। कागज़ के तल से बाहर की ओर निर्गत विद्युत धारा अथवा क्षेत्र (विद्युत अथवा चुंबकीय) को एक बिंदु
4.2 चुंबकीय बल
4.2.1 स्रोत और क्षेत्र
किसी चुंबकीय क्षेत्र
- कोई डाट (बिंदु) आपकी ओर संकेत करते तीर की नोंक जैसा प्रतीत होता है तथा क्रॉस किसी तीर की पंखयुक्त पूँछ जैसा प्रतीत होता है।
यहाँ
जैसा कि अध्याय 1 में निर्दिष्ट किया जा चुका है कि विद्युत क्षेत्र
किसी विशेष बिंदु पर विद्युत क्षेत्र एक अथवा अधिक आवेशों के कारण हो सकता है। यदि एक से अधिक आवेश हैं तो उनके कारण उत्पन्न क्षेत्र सदिश रूप से संयोजित हो जाते हैं। आप पहले अध्याय में यह सीख ही चुके हैं कि इसे अध्यारोपण का सिद्धांत कहते हैं। एक बार यदि क्षेत्र ज्ञात है तो परीक्षण आवेश पर बल को समीकरण (4.2) द्वारा ज्ञात किया जा सकता है।
जिस प्रकार स्थिर आवेश विद्युत क्षेत्र उत्पन्न करते हैं, विद्युत धाराएँ अथवा गतिमान आवेश (विद्युत क्षेत्र के साथ-साथ) चुंबकीय क्षेत्र उत्पन्न करते हैं जिसे
4.2.2 चुंबकीय क्षेत्र, लोरेंज बल
मान लीजिए विद्युत क्षेत्र
इस बल को सर्वप्रथम एच.ए. लोरेंज ने ऐम्पियर तथा अन्य वैज्ञानिकों द्वारा विस्तृत पैमाने पर किए गए प्रयोगों के आधार पर व्यक्त किया था। इस बल को अब लोरेंज बल कहते हैं। विद्युत क्षेत्र के कारण लगने वाले बल के बारे में तो आप विस्तार से अध्ययन कर ही चुके हैं। यदि हम चुंबकीय क्षेत्र के साथ अन्योन्य क्रिया पर ध्यान दें तो हमें निम्नलिखित विशेषताएँ मिलती हैं-
(i) यह
है भौतिकी
(ii) चुंबकीय बल
(a)
(b)
चित्र 4.2 आवेशित कण पर लगे बल की दिशा (a) चुंबकीय क्षेत्र
प्राप्त होती है। (b) चुंबकीय क्षेत्र की उपस्थिति में गतिशील आवेशित कण के विक्षेप
(iii) यदि आवेश गतिमान नहीं है (तब
चुंबकीय क्षेत्र के लिए व्यंजक चुंबकीय क्षेत्र के मात्रक की परिभाषा देने में हमारी सहायता करता है। यदि बल के समीकरण में हल
विमीय रीति से हम जानते हैं कि
4.2.3 विद्युत धारावाही चालक पर चुंबकीय बल
हम किसी एकल गतिमान आवेश पर चुंबकीय क्षेत्र द्वारा आरोपित बल के विश्लेषण का विस्तार विद्युत धारावाही सीधी छड़ के लिए कर सकते हैं। लंबाई
यहाँ
यहाँ
समीकरण (4.4) सीधी छड़ पर लागू होती है। इस समीकरण में
अधिकांश प्रकरणों में संकलन को समाकलन में परिवर्तित कर लेते हैं।
4.3 चुंबकीय क्षेत्र में गति
अब हम और अधिक विस्तार से चुंबकीय क्षेत्र में गतिशील आवेश के विषय में अध्ययन करेंगे। हमने यांत्रिकी (कक्षा 11 की पाठ्यपुस्तक का अध्याय 5 देखिए) में यह सीखा है कि यदि किसी बल का कण की गति की दिशा में (अथवा उसके विपरीत) कोई अवयव है तो वह बल उस कण पर कार्य करता है। चुंबकीय क्षेत्र में आवेश की गति के प्रकरण में, चुंबकीय बल कण के वेग की दिशा के लंबवत होता है। अतः कोई कार्य नहीं होता तथा वेग के परिमाण में भी कोई परिवर्तन नहीं होता (यद्यपि संवेग की दिशा में परिवर्तन हो सकता है। [ध्यान दीजिए, यह विद्युत क्षेत्र के कारण बल,
हम किसी एकसमान चुंबकीय क्षेत्र में आवेशित कण की गति पर विचार करेंगे। पहले उस स्थिति पर विचार कीजिए जिसमें वेग
यदि वेग
चित्र 4.6 कुंडलिनी गति अवयव अपरिवर्तित रहता है, क्योंकि चुंबकीय क्षेत्र के अनुदिश गति को चुंबकीय क्षेत्र प्रभावित नहीं करेगा।
आपने पिछली कक्षाओं में यह सीख लिया है (देखिए अध्याय 3 कक्षा 11) कि यदि किसी कण के वृत्ताकार पथ की त्रिज्या
जितना अधिक संवेग होगा उतनी ही अधिक निर्मित वृत्त की
त्रिज्या होगी तथा निर्मित वृत्त भी बड़ा होगा। यदि कोणीय आवृत्ति
कोणीय आवृत्ति
एक परिक्रमा पूरी करने में लगा समय
गति के वृत्तीय अवयव की त्रिज्या को कुंडलिनी की त्रिज्या कहते हैं।
उदाहरण
4.4 विद्युत धारा अवयव के कारण चुंबकीय क्षेत्र, बायो-सावर्ट नियम
जितने चुंबकीय क्षेत्र हमें ज्ञात हैं वे सभी विद्युत धाराओं (अथवा गतिशील आवेशों) तथा कणों के नैज चुंबकीय आघूर्णों के कारण उत्पन्न हुए हैं। यहाँ अब हम विद्युत धारा तथा उसके द्वारा उत्पन्न चुंबकीय क्षेत्र के बीच संबंध के बारे में अध्ययन करेंगे। यह संबंध बायो सावर्ट नियम द्वारा प्राप्त होता है। चित्र 4.7 में एक परिमित विद्युत धारा चालक
चित्र 4.7 बायो-सावर्ट नियम का निदर्श चित्र। विद्युतधारा-अवयव
की दिशा दक्षिण हस्त पेंच नियम द्वारा भी प्राप्त होती है। तथा के तलों को देखिए। कल्पना कीजिए कि आप पहले सदिश से दूसरे सदिश की ओर गमन कर रहे हैं। यदि गति वामावर्त है तो परिणामी आपकी ओर संकेत करेगा। यदि यह दक्षिणावर्त है तो परिणामी आपसे दूर की ओर होगा।
यहाँ
इस क्षेत्र का परिमाण
यहाँ हमने सदिश-गुणनफल के गुणधर्म
राशि
चुंबकीय क्षेत्र के बायो-सावर्ट नियम और स्थिरवैद्युतिकी के कूलॉम नियम में कुछ समानताएँ हैं तथा कुछ असमानताएँ। इसमें से कुछ निम्न प्रकार हैं-
(i) दोनों दीर्घ-परासी हैं, क्योंकि दोनों ही स्रोत से परीक्षण बिंदु तक की दूरी के वर्ग के व्युत्क्रमानुपाती होते हैं। दोनों ही क्षेत्रों पर अध्यारोपण सिद्धांत लागू होता है [इस संबंध में यह ध्यान दीजिए कि स्रोत
(ii) स्थिरवैद्युत क्षेत्र आदिश स्रोत, जैसे वैद्युत आवेश, द्वारा उत्पन्न होता है जबकि चुंबकीय क्षेत्र एक सदिश स्रोत जैसे,
(iii) स्थिरवैद्युत क्षेत्र स्रोत को क्षेत्र के बिंदु से मिलाने वाले विस्थापन सदिश के अनुदिश होता है जबकि चुंबकीय क्षेत्र विस्थापन सदिश
(iv) बायो-सावर्ट नियम में कोण पर निर्भरता है जो स्थिर वैद्युत क्षेत्र में नहीं होती। चित्र 4.9 में, दिशा
मुक्त दिक्स्थान की विद्युतशीलता, मुक्त दिक्स्थान की चुंबकशीलता तथा निर्वात में प्रकाश के वेग में एक रोचक संबंध है।
इस संबंध के विषय में हम विद्युत चुंबकीय तरंगों के अध्याय 8 में चर्चा करेंगे। चूँकि निर्वात में प्रकाश का वेग नियत है, गुणनफल
अगले अनुभाग में हम वृत्ताकार पाश के कारण चुंबकीय क्षेत्र परिकलित करने के लिए बायो-सावर्ट नियम का उपयोग करेंगे।
4.5 विद्युत धारावाही वृत्ताकार पाश के अक्ष पर चुंबकीय क्षेत्र
इस अनुभाग में हम विद्युत धारावाही वृत्ताकार पाश के कारण उसके अक्ष के अनुदिश चुंबकीय क्षेत्र का मूल्यांकन करेंगे। इस मूल्यांकन में पिछले अनुभाग में वर्णित अत्यल्प विद्युत धारा अवयवों
चित्र 4.9 में वृत्ताकार पाश में स्थायी विद्युत धारा
पाश के चालक अवयव
चित्र 4.9 त्रिज्या
अब
चित्र 4.9 के लिए
समीकरणों (4.9) और (4.10),
समस्त पाश पर
उपरोक्त परिणाम की एक विशेष स्थिति के रूप में हम पाश के केंद्र पर चुंबकीय क्षेत्र प्राप्त कर सकते हैं। इस प्रकार यहाँ
वृत्ताकार तार के कारण चुंबकीय क्षेत्र रेखाएँ बंद वृत्ताकार पाश बनाती हैं जिन्हें चित्र 4.10 में दर्शाया गया है। चुंबकीय क्षेत्र की दिशा (एक अन्य) दक्षिण हस्त अंगुष्ठ नियम द्वारा होती है। यह नियम नीचे दिया गया है,
वृत्ताकार तार के चारों ओर अपने दाएँ हाथ की हथेली को इस प्रकार मोड़िए कि उँगलियाँ विद्युत धारा की दिशा की ओर संकेत करें, तब इस हाथ का फैला हुआ अँगूठा चुंबकीय क्षेत्र की दिशा बताता है।
चित्र 4.10 किसी विद्युतवाही पाश का चुंबकीय क्षेत्र। पाठ की विषय वस्तु में वर्णित दक्षिण हस्त अंगुष्ठ नियम द्वारा उत्पन्न चुंबकीय क्षेत्र की दिशा निर्धारित होती है। पाश के ऊपरी पार्श्व को उत्तर ध्रुव तथा निचले पार्श्व को दक्षिण ध्रुव माना जा सकता है।
4.6 ऐम्पियर का परिपथीय नियम
बायो-सावर्ट नियम को अभिव्यक्त करने का एक अन्य वैकल्पिक तथा रुचिकर उपाय भी है। ऐम्पियर के परिपथीय नियम में किसी खुले पृष्ठ जिसकी कोई सीमा हो, पर विचार किया जाता है। इस पृष्ठ से विद्युत धारा प्रवाहित होती है। हम यह विचार करते हैं कि सीमा रेखा
चित्र 4.12 बहुत से अल्प रेखा अवयवों से मिलकर बनी है। ऐसे ही एक रेखा अवयव
यहाँ
बहुत से अनुप्रयोगों के लिए समीकरण [4.13 (a)] का कहीं अधिक सरलीकृत रूप पर्याप्त सिद्ध होता है। हम यह मानेंगे कि, इस प्रकार के प्रकरणों में ऐसे पाश (जिसे ऐम्पियरीय पाश कहते हैं।) का चयन संभव है जो इस प्रकार का है कि पाश के प्रत्येक बिंदु पर या तो
(i)
(ii)
(iii)
अब मान लीजिए
जब किसी निकाय में इस प्रकार की सममिति हो जैसे कि चित्र 4.13 में सीधे विद्युत धारावाही अनंत तार के लिए है, तब ऐम्पियर का नियम हमें चुंबकीय क्षेत्र का एक सरल मूल्यांकन करने योग्य बनाता है जो ठीक उसी प्रकार है जैसे कि गाउस नियम विद्युत क्षेत्र को निर्धारित करने में हमारी सहायता करता है। इसे नीचे दिए गए उदाहरण 4.8 में दर्शाया गया है। पाश की सीमा रेखा का चयन एक वृत्त है तथा चुंबकीय क्षेत्र वृत्त की परिधि के स्पर्शरेखीय है। समीकरण [4.13(b)] के वाम पक्ष के लिए इस नियम से प्राप्त मान B.
रोचक है-
उपरोक्त परिणाम अनंत लंबाई के तार के लिए है जो कई दृष्टिकोणों से
(i) इसमें यह अंतर्निहित है कि
(ii) इस वृत्त के किसी भी बिंदु पर क्षेत्र की दिशा इसके स्पर्शरेखीय है। इस प्रकार चुंबकीय क्षेत्र की नियत परिमाण की रेखाएँ संकेंद्री वृत्त बनाती हैं। अब चित्र 4.1(c) पर ध्यान दीजिए, लौह चूर्ण वृत्त संकेंद्री में व्यवस्थित हुआ है। ये रेखाएँ जिन्हें हम चुंबकीय क्षेत्र रेखाएँ कहते है, बंद पाश बनाती हैं। यह स्थिरवैद्युत क्षेत्र रेखाओं से भिन्न हैं। स्थिरवैद्युत क्षेत्र रेखाएँ धन आवेशों से आरंभ तथा ऋण आवेशों पर समाप्त होती हैं। सीधे विद्युत धारावाही चालक के चुंबकीय क्षेत्र के लिए व्यंजक ओर्स्टेड प्रयोग का सैद्धांतिक स्पष्टीकरण करता है।
(iii) एक अन्य ध्यान देने योग्य रोचक बात यह है कि यद्यपि तार अनंत लंबाई का है, तथापि शून्येतर दूरी पर इसके कारण चुंबकीय क्षेत्र अनंत नहीं है। यह केवल तार के अत्यधिक पास आने पर विस्फुटित होता है। यह क्षेत्र विद्युत धारा के अनुक्रमानुपाती है तथा विद्युत धारा स्रोत (अनंत लंबाई के) से दूरी के व्युत्क्रमानुपाती है।
(iv) लंबे तार के कारण उत्पन्न चुंबकीय क्षेत्र की दिशा को निर्धारित करने का एक सरल नियम है। इस नियम को दक्षिण हस्त नियम* कहते हैं। यह इस प्रकार है
तार को अपने दाएँ हाथ में इस प्रकार पकड़िए कि आपका तना हुआ अँगूठा विद्युत धारा की दिशा की ओर संकेत करे। तब आपकी अँगुलियों के मुड़ने की दिशा चुंबकीय क्षेत्र की दिशा में होगी।
ऐम्पियर का परिपथीय नियम बायो-सावर्ट नियम से भिन्न नहीं है। दोनों ही नियम विद्युत धारा तथा चुंबकीय क्षेत्र में संबंध व्यक्त करते हैं तथा दोनों ही स्थायी विद्युत धारा के समान भौतिक परिणामों को व्यक्त करते हैं। जो संबंध ऐम्पियर के नियम तथा बायो-सावर्ट नियम के बीच है ठीक वही संबंध गाउस नियम तथा कूलॉम नियम के बीच में है। ऐम्पियर का नियम तथा गाउस का नियम दोनों ही परिरेखा अथवा परिपृष्ठ पर किसी भौतिक राशि (चुंबकीय अथवा विद्युत क्षेत्र) का संबंध किसी अन्य भौतिक राशि जैसे अन्तः क्षेत्र में उपस्थित स्रोत (विद्युत धारा अथवा आवेश) के बीच संबंध व्यक्त करते हैं। यहाँ ध्यान देने योग्य बात यह भी है कि ऐम्पियर का परिपथीय नियम केवल उन स्थायी विद्युत धाराओं पर लागू होता है जो समय के साथ परिवर्तित नहीं होतीं। निम्नलिखित उदाहरण हमें परिबद्ध विद्युत धारा का अर्थ समझने में सहायता करेगा।
- कृपया ध्यान दीजिए-दो सुस्पष्ट (पृथक) नियम हैं जिन्हें दक्षिण हस्त नियम कहते हैं। इनमें से एक नियम विद्युत धारा पाश के अक्ष पर चुंबकीय क्षेत्र
की दिशा देता है तथा दूसरा सीधे विद्युत धारावाही चालक तार के लिए की दिशा है। इन नियमों में अँगूठे तथा अँगुलियों की भिन्न भूमिका है।
आंद्रे ऐम्पियर (1775-1836) आंद्रे मैरी ऐम्पियर एक फ्रांसीसी भौतिक विज्ञानी, गणितज्ञ एवं रसायनज्ञ थे जिन्होंने विद्युतगतिकी विज्ञान की आधारशिला रखी। ऐम्पियर एक बाल प्रतिभा थे जिसने 12 वर्ष की आयु में उच्च गणित में महारत हासिल कर ली थी। ऐम्पियर ने ऑर्स्टेड की खोज का महत्त्व समझा और धारा विद्युत एवं चुंबकत्व में संबंध खोजने के लिए प्रयोगों की एक लंबी शृंखला पार की। इन खोजों की परिणति 1827 में, Mathematical theory of Electrodynamic Phenomena Deduced Solely from Experiments नामक पुस्तक के प्रकाशन के रूप में हुई। उन्होंने परिकल्पना की कि सभी चुंबकीय प्रक्रम, वृत्तवाही विद्युत धाराओं के कारण होते हैं। ऐम्पियर स्वभाव से बहुत विनम्र और भुलक्कड़ थे। एक बार वह सम्राट नेपोलियन का रात्रिभोज का निमंत्रण भी भूल गए थे। 61 वर्ष की उम्र में न्यूमोनिया से उनकी मृत्यु हो गई। उनकी कब्र के पत्थर पर यह समाधि लेख उत्कीर्णित है - Tandem felix (अंत में प्रसन्न)।
यहाँ ध्यान देने योग्य बात यह है कि जबकि ऐम्पियर के परिपथीय नियम को किसी भी पाश पर लागू किया जा सकता है परंतु यह हर प्रकरण में चुंबकीय क्षेत्र का मूल्यांकन सदैव ही आसान नहीं बनाता। उदाहरण के लिए, अनुभाग 4.5 में वर्णन किए गए वृत्ताकार पाश के प्रकरण में, इसे सरल व्यंजक
4.7 परिनालिका
हम यहाँ एक लंबी परिनालिका के विषय में चर्चा करेंगे। लंबी परिनालिका से हमारा तात्पर्य यह है कि परिनालिका की लंबाई उसकी त्रिज्या की तुलना में अधिक है। परिनालिका में एक लंबा तार सर्पिल के आकार में लिपटा होता है जिसमें प्रत्येक फेरा अपने निकट के फेरे के साथ काफ़ी सटा होता है। इस प्रकार फेरे को एक वृत्ताकार पाश माना जा सकता है। किसी परिनालिका के सभी फेरों के कारण उत्पन्न कुल चुंबकीय क्षेत्र प्रत्येक फेरे के चुंबकीय क्षेत्रों का सदिश योग होता है। परिनालिका पर लपेटने के लिए इनैमलित तारों का उपयोग किया जाता है ताकि फेरे एक दूसरे से विद्युतरोधी रहें।
(a)
(b)
चित्र 4.15 (a) परिनालिका के किसी भाग जिसे स्पष्टता की दृष्टि से बाहर खींचा दर्शाया गया है, के कारण चुंबकीय क्षेत्र। केवल बाह्य अर्धवृत्ताकार भाग दर्शाया गया है। ध्यान से देखिए, किस प्रकार पास-पास स्थित फेरों के बीच चुंबकीय क्षेत्र एक दूसरे को निरसित कर देते हैं। (b) किसी परिमित परिनालिका का चुंबकीय क्षेत्र।
चित्र 4.15 में किसी परिमित परिनालिका का चुंबकीय क्षेत्र दर्शाया गया है। चित्र 4.15 (a) में हमने इस परिनालिका के एक खंड को विस्तारित करके दिखाया है। चित्र 4.15 (b) में वृत्ताकार पाश से यह स्पष्ट है कि दो पास-पास के फेरों के बीच चुंबकीय क्षेत्र नष्ट हो जाता है। चित्र 4.15 (b)
में हम यह देखते हैं कि अन्तःभाग के मध्य बिंदु
चित्र 4.16 अत्यधिक लंबी परिनालिका का चुंबकीय क्षेत्र। चुंबकीय क्षेत्र को निर्धारित करने के लिए हम एक आयताकार ऐम्पियर-पाश
किसी आयताकार ऐम्पियर-पाश abcd पर विचार करिए। जैसा कि ऊपर तर्क दिया जा चुका है
मान लीजिए प्रति एकांक लंबाई फेरों की संख्या
क्षेत्र की दिशा दक्षिण हस्त नियम से प्राप्त होती है। परिनालिका का सामान्यतः उपयोग एकसमान चुंबकीय क्षेत्र प्राप्त करने के लिए किया जाता है। अगले अध्याय में हम यह देखेंगे कि परिनालिका में भीतर नर्म लौह क्रोड रखकर विशाल चुंबकीय क्षेत्र उत्पन्न करना संभव है।
4.8 दो समांतर विद्युत धाराओं के बीच बल-ऐम्पियर
हम यह सीख चुके हैं कि किसी विद्युत धारावाही चालक के कारण चुंबकीय क्षेत्र उत्पन्न होता है तो बायो-सावर्ट नियम का पालन करता है। साथ ही हमने यह भी सीखा है कि विद्युत धारावाही चालक पर बाह्य चुंबकीय क्षेत्र बल आरोपित करता है। यह लोरेंज बल सूत्र का अनुगमन करता है। अतः यह आशा करना तर्कसंगत है कि एक-दूसरे के पास स्थित दो विद्युत धारावाही चालक एक दूसरे पर (चुंबकीय) बल आरोपित करेंगे। सन् 1820-25 की अवधि में ऐम्पियर ने इस चुंबकीय बल की प्रकृति, इसकी विद्युत धारा के परिमाण, चालक की आकृति तथा आमाप पर निर्भरता के साथ इन चालकों के बीच की दूरी पर निर्भरता का अध्ययन किया। इस अनुभाग में हम दो समांतर विद्युत धारावाही चालकों के सरल उदाहरण पर ही चर्चा करेंगे जो कदाचित ऐम्पियर के श्रम साध्य कार्यों के प्रति आभार प्रकट करने में हमारी सहायता करेंगे।
चित्र 4.17 में दो लंबे समांतर चालक
चित्र 4.17 दो लंबे सीधे, समांतर चालक जिनमें अपरिवर्ती धारा
चालक ’
वास्तव में ’
ध्यान दीजिए, यह न्यूटन के तीसरे गति के नियम के अनुरूप है। इस प्रकार हमने समांतर चालकों तथा अपरिवर्ती विद्युत धाराओं के लिए यह तो दर्शा ही दिया है कि बायो-सावर्ट नियम तथा लोरेंज बल द्वारा प्राप्त परिणाम न्यूटन के गति के तीसरे नियम के अनुरूप है।*
हमने ऊपर प्राप्त परिणामों से यह पाया कि समान दिशा में प्रवाहित होने वाली विद्युत धाराएँ एक दूसरे को आकर्षित करती हैं। हम यह भी दर्शा सकते हैं कि विपरीत दिशाओं में प्रवाहित होने वाली विद्युत धाराएँ एक दूसरे को प्रतिकर्षित करती हैं। इस प्रकार
समांतर धाराएँ आकर्षित तथा प्रतिसमांतर धाराएँ प्रतिकर्षित करती हैं।
यह नियम उस नियम के विपरीत है जिसका हमने स्थिरवैद्युतिकी में अध्ययन किया था"सजातीय आवेशों में प्रतिकर्षण तथा विजातीय आवेशों में आकर्षण होता है।" परंतु सजातीय (समांतर) धाराएँ एक दूसरे को आकर्षित करती हैं।
मान लीजिए
उपरोक्त व्यंजक का उपयोग विद्युत धारा के मात्रक ऐम्पियर (A) की परिभाषा को प्राप्त करने में किया जा सकता है। यह सात SI मूल मात्रकों में से एक है।
एक ऐम्पियर वह अपरिवर्ती विद्युत धारा है जो दो लंबे, सीधे उपेक्षणीय अनुप्रस्थ काट के निर्वात में एक दूसरे से
‘ऐम्पियर’ की यह परिभाषा सन् 1946 में अपनायी गई थी। यह एक सैद्धांतिक परिभाषा है। व्यवहार में हमें पृथ्वी के चुंबकीय क्षेत्र के प्रभाव को विलुप्त करना चाहिए तथा बहुत लंबे तारों के स्थान पर उचित ज्यामिति की बहुफेरों की कुंडलियाँ लेनी चाहिए। एक उपकरण, जिसे ‘धारा तुला’ कहते हैं, का उपयोग इस यांत्रिक बल की माप के लिए किया जाता है।
आवेश के SI मात्रक, अर्थात कूलॉम को अब हम ऐम्पियर के पदों में परिभाषित कर सकते हैं।
जब किसी चालक में
4.9 विद्युत धारा पाश पर बल आघूर्ण, चुंबकीय द्विध्रुव
4.9.1 एकसमान चुंबकीय क्षेत्र में आयताकार विद्युत धारा पाश पर बल आघूर्ण
अब हम आपको यह दिखाएँगे कि एकसमान चुंबकीय क्षेत्र में स्थित कोई आयताकार पाश जिससे अपरिवर्ती विद्युत धारा
पहले हम उस सरल प्रकरण पर विचार करते हैं जिसमें आयताकार पाश इस प्रकार स्थित है कि एकसमान चुंबकीय क्षेत्र
चुंबकीय क्षेत्र पाश की दो भुजाओं
इसी प्रकार, चुंबकीय क्षेत्र भुजा
इसी प्रकार पाश पर आरोपित नेट बल शून्य है। बलों
(a)
(b)
चित्र 4.18 (a) एकसमान चुंबकीय क्षेत्र में स्थित कोई विद्युत धारावाही आयताकार कुंडली। चुंबकीय आघूर्ण
123
यहाँ
अब हम आगे उस प्रकरण पर विचार करेंगे जिसमें पाश का तल चुंबकीय क्षेत्र के अनुदिश नहीं है, परंतु इनके बीच कोई कोण बनता है। हम चुंबकीय क्षेत्र
(a)
(b)
चित्र 4.19 (a) पाश
भुजाओं
परंतु ये संरेख नहीं हैं। इसके परिणामस्वरूप पहले की तरह एक बल युग्म उत्पन्न होता है। तथापि, पिछले प्रकरण जिसमें पाश का तल चुंबकीय क्षेत्र के अनुदिश था, की तुलना में बल आघूर्ण का परिमाण अब कम है। इसका कारण यह है कि बलयुग्म बनाने वाले बलों के बीच की लंबवत दूरी कम हो गई है। चित्र 4.19(b) में सिरे
जैसे-जैसे
यहाँ क्षेत्र सदिश
द्विध्रुव]
यह स्थिरवैद्युतिकी के प्रकरण के सदृश है। [विद्युत क्षेत्र
जैसा कि समीकरण (4.22) से स्पष्ट है, चुंबकीय क्षेत्र की विमाएँ
समीकरण (4.23) से स्पष्ट है कि जब
यदि पाश में पास-पास सटे हुए
उदाहरण
यह कुंडली ऊर्ध्वाधर तल में रखी है तथा किसी क्षैतिज अक्ष जो उसके व्यास से संरेखित है, के परितः घूर्णन करने के लिए स्वतंत्र है। एक
हल
(a) समीकरण (4.12) से
यहाँ,
(b) समीकरण (4.24) से चुंबकीय आघूर्ण
इस बार फिर दिशा दक्षिण हस्त अंगुष्ठ नियम द्वारा प्राप्त होती है।
(c)
आरंभ में
यहाँ
इसका उपयोग करने पर,
g
4.9.2 वृत्ताकार विद्युत धारा पाश चुंबकीय द्विध्रुव
इस अनुभाग में हम मौलिक चुंबकीय तत्व के रूप में किसी विद्युत धारा पाश के विषय में विचार करेंगे। हम यह दर्शाएँगे कि वृत्ताकार विद्युत धारा पाश के कारण चुंबकीय क्षेत्र (अधिक दूरियों पर)
व्यवहार में वैद्युत द्विध्रुव के विद्युत क्षेत्र से बहुत कुछ समान होता है। अनुभाग 4.5 में हमने
तथा इसकी दिशा अक्ष के अनुदिश थी जिसे दक्षिण हस्त अंगुष्ठ नियम द्वारा प्राप्त किया गया था (चित्र 4.10)। यहाँ पर
ध्यान दीजिए, पाश का क्षेत्रफल
जैसा कि पहले हमने चुंबकीय आघूर्ण
B
समीकरण [4.25(a)] का यह व्यंजक किसी स्थिरवैद्युत द्विध्रुव के विद्युत क्षेत्र के लिए पहले प्राप्त किए जा चुके व्यंजक से काफ़ी मेल खाता है। इस समानता को देखने के लिए हम प्रतिस्थापित करते हैं
तब हमें प्राप्त होता है,
जो कि यथार्थ रूप से किसी वैद्युत द्विध्रुव का उसके अक्ष पर विद्युत क्षेत्र है। इसके विषय में हमने अध्याय 1 अनुभाग 1.9 [समीकरण (1.20)] में अध्ययन किया था।
यह दर्शाया जा सकता है कि उपरोक्त सदृशता को आगे भी ले जाया जा सकता है। हमने यह पाया था कि द्विध्रुव के लंबवत द्विविभाजक पर विद्युत क्षेत्र [समीकरण (1.21) देखिए]
यहाँ
किसी बिंदु चुंबकीय द्विध्रुव के लिए समीकरणों [4.25(a)] तथा [4.25(b)] द्वारा दिए गए परिणाम यथार्थ बन जाते हैं।
उपरोक्त परिणाम किसी भी समतल पाश पर लागू होते दर्शाए जा सकते हैं। समतल विद्युत धारा पाश किसी अक्ष चुंबकीय द्विध्रुव के तुल्य होता है जिसका चुंबकीय आघूर्ण
हमने यह दर्शाया कि कोई विद्युत धारा पाश (i) चुंबकीय क्षेत्र उत्पन्न करता है (चित्र 4.10 देखिए) तथा अधिक दूरियों पर एक चुंबकीय द्विध्रुव की तरह व्यवहार करता है तथा (ii) पर एक बल आघूर्ण कार्य करता है जैसे चुंबकीय सुई। इसके आधार पर ऐम्पियर ने यह सुझाव दिया था कि समस्त चुंबकत्व प्रवाहित विद्युत धाराओं के कारण है। यह आंशिक रूप से सत्य प्रतीत होता है तथा अब तक कोई भी चुंबकीय एकध्रुव नहीं देखा जा सका है। तथापि मूल कण जैसे इलेक्ट्रॉन अथवा प्रोटॉन के भी नैज चुंबकीय आघूर्ण हैं जो प्रवाहित विद्युत धाराओं के कारण नहीं हैं।
4.10 चल कुंडली गैल्वेनोमीटर
अध्याय 3 के अंतर्गत विद्युत परिपथों में प्रवाहित धाराओं तथा वोल्टताओं के विषय में विस्तार से चर्चा की जा चुकी है। परंतु हम इन्हें किस प्रकार मापते हैं। हम यह कैसे कहते हैं कि किसी परिपथ में
चित्र 4.20 चल कुंडली गैल्वेनोमीटर। इसके अवयवों का वर्णन पाठ में किया गया है। आवश्यकतानुसार इस उपकरण का उपयोग हम धारा का पता लगाने या धारा (ऐमीटर), या फिर वोल्टता (वोल्टमीटर) का मान ज्ञात करने के लिए करते हैं।
चल कुंडली गैल्वेनोमीटर में किसी एकसमान त्रिज्य (अरीय) चुंबकीय क्षेत्र में किसी अक्ष पर घूर्णन करने के लिए अनेक फेरों वाली एक कुंडली होती है (चित्र 4.20)। इस कुंडली के भीतर एक बेलनाकार नर्म लोह क्रोड जो केवल चुंबकीय क्षेत्र को त्रिज्य ही नहीं बनाता वरन चुंबकीय क्षेत्र की प्रबलता में भी वृद्धि कर देता है। जब इस कुंडली से कोई विद्युत धारा प्रवाहित की जाती है तो इस पर एक बल आघूर्ण कार्य करता है। समीकरण (4.20) के अनुसार इस बल आघूर्ण
यहाँ, भौतिक राशियों के प्रतीकों के अपने सामान्य अर्थ हैं। चूँकि डिज़ाइन के अनुसार चुंबकीय क्षेत्र त्रिज्य है, हमने बल आघूर्ण के लिए दिए गए उपरोक्त व्यंजक में
यहाँ
कोष्ठक की राशि का मान किसी दिए गए गैल्वेनोमीटर के लिए एक नियतांक है। गैल्वेनोमीटर का उपयोग कई प्रकार से किया जा सकता है। इसका उपयोग एक संसूचक के रूप में यह ज्ञात करने के लिए किया जा सकता है कि परिपथ में कोई विद्युत धारा प्रवाहित हो रही है अथवा नहीं। इस प्रकार का उपयोग हमने व्हीटस्टोन सेतु व्यवस्था में किया था। जब गैल्वेनोमीटर का उपयोग संसूचक के रूप में करते हैं तो इसका संकेतक साम्यावस्था (शून्य विक्षेप स्थिति अर्थात जब कुंडली में कोई विद्युत धारा प्रवाहित नहीं होती) पैमाने के मध्य में होता है न कि बाईं ओर जैसा कि चित्र 4.20 में दर्शाया गया है। प्रवाहित विद्युत धारा के अनुसार गैल्वेनोमीटर का संकेतक विद्युत धारा की दिशा के अनुरूप बाएँ अथवा दाएँ विक्षेपित हो जाता है।
गैल्वेनोमीटर का उपयोग इसी रूप में किसी परिपथ में प्रवाहित विद्युत धारा को मापने के लिए ऐमीटर की भाँति नहीं किया जा सकता। इसके दो कारण हैं (i) गैल्वेनोमीटर एक अत्यंत सुग्राही युक्ति है, यह
यदि परिपथ के प्रतिरोध
किसी भी उत्पादक के लिए गैल्वेनोमीटर की सुग्राहिता में वृद्धि करने का सरल उपाय यह है कि वह कुंडली में फेरों की संख्या
धारामापी का उपयोग परिपथ के किसी अंश के सिरों के बीच विभवांतर ज्ञात करने के लिए वोल्टतामापी के रूप में भी हो सकता है। इस उद्देश्य के लिए इसको परिपथ के उस अंश के पार्श्वक्रम में लगाना होगा। और फिर, इसमें से अत्यल्प धारा प्रवाहित होनी चाहिए, अन्यथा, वोल्टता की माप मूल व्यवस्था को अत्यधिक विक्षुब्ध कर देगी। प्रायः हम मापक यंत्रों द्वारा उत्पन्न विक्षोभ को एक प्रतिशत से कम रखते हैं। माप की परिशुद्धता बनाए रखने के लिए, गैल्वेनोमीटर के श्रेणीक्रम में एक बड़ा प्रतिरोध
वोल्टमीटर के पैमाने को अंशांकित कर दिया जाता है ताकि आसानी से वोल्टता का मान पढ़ा जा सके। किसी वोल्टमापी की वोल्टता सुग्राहिता की परिभाषा हम विक्षेप प्रति एकांक वोल्टता से करते हैं। समीकरण (4.26) से
यहाँ एक रोचक तथ्य ध्यान देने योग्य यह है कि धारा सुग्राहिता में वृद्धि करने पर यह आवश्यक नहीं है कि वोल्टता सुग्राहिता में भी वृद्धि हो जाएगी। आइए समीकरण (4.27) पर विचार करें जो धारा सुग्राहिता का माप बताती है। यदि
अर्थात धारा सुग्राहिता भी दोगुनी हो जाती है। किंतु, गैल्वेनोमीटर का प्रतिरोध भी दो गुना हो जाने की संभावना है क्योंकि यह तार की लंबाई के अनुक्रमानुपाती है। समीकरण (4.28) में
अपरिवर्तित रहती है। अतः व्यापक रूप से गैल्वेनोमीटर से ऐमीटर में रूपांतरित करने के लिए जो संशोधन किए जाते हैं गैल्वेनोमीटर को वोल्टमीटर में परिवर्तित करने के लिए इनसे भिन्न संशोधन किए जाने चाहिए।
सारांश
1. चुंबकीय क्षेत्र
चुंबकीय क्षेत्र
2.
यहाँ
3. किसी एकसमान चुंबकीय क्षेत्र में, कोई आवेश
यह आवृत्ति कण की चाल तथा त्रिज्या पर निर्भर नहीं करती। इस तथ्य का उपयोग साइक्लोट्रॉन नामक मशीन में किया जाता है जो आवेशित कणों को त्वरित करने में उपयोगी होता है।
4. बायो-सावर्ट नियम के अनुसार
5. त्रिज्या
कुंडली के केंद्र पर इस क्षेत्र का परिमाण
6. ऐम्पियर का परिपथीय नियम : मान लीजिए कोई खुला पृष्ठ
यहाँ
7. किसी लंबे सीधे तार जिससे
क्षेत्र रेखाएँ तार के साथ संकेंद्री वृत्त होती हैं।
8. किसी लंबी परिनालिका जिससे
यहाँ
9. समांतर विद्युत धाराएँ आकर्षित तथा प्रतिसमांतर विद्युत धाराएँ प्रतिकर्षित करती हैं।
10. बहुत पास लिपटे
तथा
तथा इस पर बल आघूर्ण
किसी चल कुंडली गैल्वेनोमीटर में इस बल आघूर्ण को कमानी द्वारा लगाया प्रति बल आघूर्ण संतुलित कर लेता है और तब हमें प्राप्त होता है
यहाँ
11. किसी चल कुंडली गैल्वेनोमीटर को उसकी कुंडली के पार्श्वक्रम में कोई अल्प परिमाण का शंट प्रतिरोध
भौतिक राशि | प्रतीक | प्रकृति | विमाएँ | मात्रक | टिप्पणी |
---|---|---|---|---|---|
मुक्त आकाश की चुंबकशीलता चुंबकीय क्षेत्र |
अदिश | ||||
चुंबकीय आघूर्ण | सदिश | ||||
ऐंठन नियतांक | सदिश |
विचारणीय विषय
1. स्थिरवैद्युत क्षेत्र रेखाएँ धनावेश से आरंभ होकर ऋणावेश पर समाप्त हो जाती हैं अथवा अनंत पर लुप्त या विलीन हो जाती हैं। चुंबकीय क्षेत्र रेखाएँ सदैव बंद पाश बनाती हैं।
2. इस अध्याय में वर्णित विचार केवल अपरिवर्ती विद्युत धाराओं (जो समय के साथ परिवर्तित नहीं होती)के लिए ही लागू है।
समय के साथ परिवर्तित होने वाली विद्युत धाराओं के लिए न्यूटन का तीसरा नियम वैद्युतचुंबकीय क्षेत्र के संवेग का संज्ञान करने पर ही वैध होता है।
3. लोरेंज बल के समीकरण का स्मरण कीजिए,
वेग निर्भर इस बल ने कुछ महानतम वैज्ञानिक विचारकों का ध्यान आकर्षित किया। यदि कोई प्रेक्षक एक ऐसे फ्रेम में पहुँच जाए जहाँ उसका क्षणिक वेग
4. ऐम्पियर का परिपथीय नियम, बायो-सावर्ट नियम से अलग नहीं है। यह बायो-सावर्ट नियम से व्युत्पन्न किया जा सकता है। इसका बायो-सावर्ट नियम से वैसा ही संबंध है जैसा कि गाउस नियम का कूलाम नियम से।