अध्याय 02 सरल रेखा में गति
2.1 भूमिका
विश्व की प्रत्येक वस्तु प्रत्यक्ष या अप्रत्यक्ष रूप से गतिमान रहती है । हमारा चलना, दौड़ना, साइकिल सवारी आदि दैनिक जीवन में दिखाई देने वाली क्रियाएँ गति के कुछ उदाहरण हैं। इतना ही नहीं, निद्रावस्था में भी हमारे फेफड़ों में वायु का प्रवेश एवं निष्कासन तथा हमारी धमनियों एवं शिराओं में रुधिर का संचरण होता रहता है । हम पेड़ों से गिरते हुए पत्तों को तथा बाँध से बहते हुए पानी को देखते हैं । मोटरगाड़ी और वायुयान यात्रियों को एक स्थान से दूसरे स्थान को ले जाते हैं । पृथ्वी 24 घंटे में एक बार अपनी अक्ष के परितः घूर्णन करती है तथा वर्ष में एक बार सूर्य की परिक्रमा पूरी करती है । सूर्य अपने ग्रहों सहित हमारी आकाशगंगा नामक मंदाकिनी में विचरण करता है, तथा जो स्वयं भी स्थानीय मंदाकिनियों के समूह में गति करती है ।
इस प्रकार समय के सापेक्ष वस्तु की स्थिति में परिवर्तन को गति कहते हैं। समय के साथ स्थिति कैसे परिवर्तित होती है ? इस अध्याय में हम गति के बारे में पढ़ेंगे । इसके लिए हमें वेग तथा त्वरण की धारणा को समझना होगा । इस अध्याय में हम अपना अध्ययन वस्तु के एक सरल रेखा के अनुदिश गति तक ही सीमित रखेंगे । इस प्रकार की गति को सरल रेखीय गति भी कहते हैं । एकसमान त्वरित सरल रेखीय गति के लिए कुछ सरल समीकरण प्राप्त किए जा सकते हैं। अंततः गति की आपेक्षिक प्रकृति को समझने के लिए हम आपेक्षिक गति की धारणा प्रस्तुत करेंगे ।
इस अध्ययन में हम सभी गतिमान वस्तुओं को अतिसूक्ष्म मानकर बिंदु रूप में निरूपित करेंगे । यह सन्निकटन तब तक मान्य होता है जब तक वस्तु का आकार निश्चित समय अंतराल में वस्तु द्वारा चली गई दूरी की अपेक्षा पर्याप्त रूप से कम होता है । वास्तविक जीवन में बहुत-सी स्थितियों में वस्तुओं के आमाप (साइज़) की उपेक्षा की जा सकती है और बिना अधिक त्रुटि के उन्हें एक बिंदु-वस्तु माना जा सकता है ।
शुद्धगतिकी में, हम वस्तु की गति के कारणों पर ध्यान न देकर केवल उसकी गति का ही अध्ययन करते हैं। इस अध्याय एवं अगले अध्याय में विभिन्न प्रकार की गतियों का वर्णन किया गया है । इन गतियों के कारणों का अध्ययन हम पाँचवें अध्याय में करेंगे ।
2.2 तात्क्षणिक वेग एवं चाल
जैसा कि हम पढ़ चुके हैं कि औसत वेग से हमें यह ज्ञात होता है कि कोई वस्तु किसी दिए गए समय अंतराल में किस गति से चल रही है, किन्तु इससे यह पता नहीं चल पाता कि इस समय अंतराल के भिन्न-भिन्न क्षणों पर वह किस गति से चल रही है। अतः किसी क्षण
गतिमान वस्तु का तात्क्षणिक वेग उसके औसत वेग के बराबर होगा यदि उसके दो समयों
यहाँ प्रतीक
किसी क्षण पर वस्तु का वेग निकालने के लिए हम समीकरण (2.1a) का उपयोग कर सकते हैं । इसके लिए ग्राफिक या गणितीय विधि को प्रयोग में लाते हैं। मान लीजिए कि हम गतिमान कार का वेग
चित्र 2.1 स्थिति-समय ग्राफ से वेग ज्ञात करना
व्यक्त करेगी । अब हम
सारणी
2.0 | 3.0 | 5.0 | 2.16 | 10.0 | 7.84 | 3.92 |
1.0 | 3.5 | 4.5 | 3.43 | 7.29 | 3.86 | 3.86 |
0.5 | 3.75 | 4.25 | 4.21875 | 6.14125 | 1.9225 | 3.845 |
0.1 | 3.95 | 4.05 | 4.93039 | 5.31441 | 0.38402 | 3.8402 |
0.01 | 3.995 | 4.005 | 5.100824 | 5.139224 | 0.0384 | 3.8400 |
है । यह अनुपात प्रथम कॉलम में अंकित
सारणी 2.1 से स्पष्ट है कि जैसे-जैसे
यहाँ यह बात ध्यान देने योग्य है कि वस्तु का तात्क्षणिक वेग निकालने के लिए ग्राफिक विधि सदैव सुविधाजनक नहीं होती है । इस विधि (ग्राफिक विधि) में हम गतिमान वस्तु के स्थिति-समय ग्राफ को सावधानीपूर्वक खींचते हैं तथा
ध्यान दीजिए कि एकसमान गति में हर समय ( तात्क्षणिक) वेग का वही मान होता है जो औसत वेग का होता है।
तात्क्षणिक चाल या केवल चाल गतिमान वस्तु के वेग का परिमाण है । उदाहरण के तौर पर, वेग
2.3 त्वरण
सामान्यतः वस्तु की गति की अवधि में उसके वेग में परिवर्तन होता रहता है । वेग में हो रहे इस परिवर्तन को कैसे व्यक्त करें। वेग में हो रहे इस परिवर्तन को समय के सापेक्ष व्यक्त करना चाहिए या दूरी के सापेक्ष ? यह समस्या गैलीलियो के समय भी थी। गैलीलियो ने पहले सोचा कि वेग में हो रहे परिवर्तन की इस दर को दूरी के सापेक्ष व्यक्त किया जा सकता है परंतु जब उन्होंने मुक्त रूप से गिरती हुई तथा नत समतल पर गतिमान वस्तुओं की गति का विधिवत् अध्ययन किया तो उन्होंने पाया कि समय के सापेक्ष वेग परिवर्तन की दर का मान मुक्त रूप से गिरती हुई वस्तुओं के लिए, स्थिर रहता है जबकि दूरी के सापेक्ष वस्तु का वेग परिवर्तन स्थिर नहीं रहता वरन जैसे-जैसे गिरती हुई वस्तु की दूरी बढ़ती जाती है वैसे-वैसे यह मान घटता जाता है। इस अध्ययन ने त्वरण की वर्तमान धारणा को जन्म दिया जिसके अनुसार त्वरण को हम समय के सापेक्ष वेग परिवर्तन के रूप में परिभाषित करते हैं ।
जब किसी वस्तु का वेग समय के सापेक्ष बदलता है तो हम कहते हैं कि उसमें त्वरण हो रहा है । वेग में परिवर्तन तथा तत्संबंधित समय अंतराल के अनुपात को हम औसत त्वरण कहते हैं । इसे
यहां
वेग-समय
तात्क्षणिक त्वरण : जिस प्रकार हमने पूर्व में तात्क्षणिक वेग की व्याख्या की है, उसी प्रकार हम तात्क्षणिक त्वरण को भी परिभाषित करते हैं। वस्तु के तात्क्षणिक त्वरण को
चूँकि वेग एक सदिश राशि है जिसमें दिशा एवं परिमाण दोनों होते हैं अतएव वेग परिवर्तन में इनमें से कोई एक अथवा दोनों निहित हो सकते हैं । अतः या तो चाल (परिमाण) में परिवर्तन, दिशा में परिवर्तन अथवा इन दोनों में परिवर्तन से त्वरण का उद्भव हो सकता है। वेग के समान ही त्वरण भी धनात्मक, ऋणात्मक अथवा शून्य हो सकता है। इसी प्रकार के त्वरण संबंधी स्थिति-समय ग्राफों को चित्रों 2.2 (a), 2.2 (b) तथा 2.2 (c) में दर्शाया गया है । चित्रों से स्पष्ट है कि धनात्मक त्वरण के लिए
(a)
(b)
(c) चित्र 2.2 ऐसी गति के लिए स्थिति-समय ग्राफ जिसके लिए (a) त्वरण धनात्मक है, (b) त्वरण ऋणात्मक है तथा (c) त्वरण शून्य है ।
यद्यपि गतिमान वस्तु का त्वरण समय के साथ-साथ बदल सकता है, परंतु सुविधा के लिए इस अध्याय में गति संबंधी हमारा अध्ययन मात्र स्थिर त्वरण तक ही सीमित रहेगा । ऐसी स्थिति में औसत त्वरण
यदि क्षण
अब हम यह देखेंगे कि कुछ सरल उदाहरणों में वेग-समय ग्राफ कैसा दिखलाई देता है । चित्र 2.3 में स्थिर त्वरण के लिए चार अलग-अलग स्थितियों में
(a)
(b)
(c)
(d)
चित्र 2.3 स्थिर त्वरण के साथ गतिमान वस्तु का वेग-समय ग्राफ (a) धनात्मक त्वरण से धनात्मक दिशा में गति, (b) ऋणात्मक त्वरण से धनात्मक दिशा में गति, (c) ॠणात्मक त्वरण से ॠणात्मक दिशा में गति, (d) ॠणात्मक त्वरण के साथ वस्तु की गति जो समय
(a) कोई वस्तु धनात्मक दिशा में धनात्मक त्वरण से गतिमान है।
(b) कोई वस्तु धनात्मक दिशा में ऋणात्मक त्वरण से गतिमान है।
(c) कोई वस्तु ऋणात्मक दिशा में ऋणात्मक त्वरण से गतिमान है ।
(d) कोई वस्तु पहले
किसी गतिमान वस्तु के वेग-समय ग्राफ का एक महत्त्वपूर्ण लक्षण है कि
चित्र
चित्र में
ध्यान दीजिए कि इस अध्याय में अनेक स्थानों पर खींचे गए
इसका अभिप्राय है कि वेग तथा त्वरण किसी क्षण सहसा नहीं बदल सकते। परिवर्तन सदैव सतत होता है।
2.4 एकसमान त्वरण से गतिमान वस्तु का शुद्धगतिकी
संबंधी समीकरणअब हम एकसमान त्वरण ’
इस समीकरण को चित्र 2.5 में ग्राफ के रूप में निरूपित किया गया है ।
चित्र 2.5 एकसमान त्वरण से गतिमान वस्तु के लिए
इस वक्र के अंतर्गत आने वाला क्षेत्रफल :
0 से
जैसे कि पहले स्पष्ट किया जा चुका है,
परंतु
अत:
अथवा
समीकरण (2.5) को हम निम्न प्रकार भी लिख सकते हैं
समीकरण (2.7a) तथा (2.7b) का अभिप्राय है कि वस्तु का विस्थापन
समीकरण (2.4) से
यदि हम समीकरण (2.4) से
ये सभी एकसमान त्वरित सरल रेखीय गति के शुद्धगतिक समीकरण हैं ।
व्यंजक (2.9a) में जो समीकरण दिए गए हैं, उसकी व्युत्पत्ति के लिए हमने माना है कि क्षण
सारांश
1. यदि किसी वस्तु की स्थिति समय के साथ बदलती है तो हम कहते हैं कि वस्तु गतिमान है। एक सरल रैखिक गति में वस्तु की स्थिति को सुगमता के दृष्टिकोण से चुने गए किसी मूल बिंदु के सापेक्ष निर्दिष्ट किया जा सकता है । मूल बिंदु के दायों ओर की स्थितियों को धनात्मक तथा बायों ओर की स्थितियों को ऋणात्मक कहा जाता है ।
2. किसी वस्तु द्वारा चली गई दूरी की लंबाई को पथ-लंबाई के रूप में परिभाषित करते हैं ।
3. वस्तु की स्थिति में परिवर्तन को हम विस्थापन कहते हैं और इसे
पथ-लंबाई उन्हीं दो बिंदुओं के बीच विस्थापन के परिणाम के बराबर या उससे अधिक हो सकती है ।
4. जब कोई वस्तु समान समय अंतराल में समान दूरियाँ तय करती है तो ऐसी गति को एकसमान गति कहते हैं । यदि ऐसा नहीं है तो गति असमान होती है ।
5. विस्थापन की अवधि के समय अंतराल द्वारा विस्थापन को विभाजित करने पर जो राशि प्राप्त होती है, उसे औसत वेग कहते हैं तथा इसे
6. वस्तु की यात्रा की अवधि में चली गई कुल पथ-लंबाई एवं इसमें लगे समय अंतराल अनुपात को औसत चाल कहते हैं। किसी वस्तु की औसत चाल किसी दिए गए समय अन्तराल में उसके औसत वेग के परिणाम के बराबर अथवा अधिक होती है ।
7. जब समय अतंराल
किसी क्षण वस्तु का वेग उस क्षण स्थान समय-ग्राफ की प्रवणता के बराबर होता है ।
8. वस्तु के वेग में परिवर्तन को संगत समय अंतराल से विभाजित करने पर जो राशि प्राप्त होती है, उसे औसत त्वरण कहते हैं :
9. जब समय अंतराल अत्यल्प
किसी क्षण वस्तु का त्वरण उस क्षण वेग-समय ग्राफ की प्रवणता के बराबर होता है । एकसमान गति के लिए त्वरण शून्य होता है तथा
10. किन्हीं दो क्षणों
11. एकसमान त्वरण से गतिमान वस्तु के लिए कुछ सामान्य समीकरणों का एक समूह होता है जिससे पाँच राशियाँ यथा विस्थापन
इन समीकरणों में क्षण
विचारणीय विषय
1. मूल बिंदु तथा किसी अक्ष की धनात्मक दिशा का चयन अपनी रुचि का विषय है । आपको सबसे पहले इस चयन का उल्लेख कर देना चाहिए और इसी के बाद राशियों; जैसे- विस्थापन, वेग तथा त्वरण के चिह्नों का निर्धारण करना चाहिए।
2. यदि किसी वस्तु की चाल बढ़ती जा रही है तो त्वरण वेग की दिशा में होगा परंतु यदि चाल घटती जाती है तो त्वरण वेग की विपरीत दिशा में होगा । यह कथन मूल बिंदु तथा अक्ष के चुनाव पर निर्भर नहीं करता ।
3. त्वरण के चिह्न से हमें यह पता नहीं चलता कि वस्तु की चाल बढ़ रही है या घट रही है । त्वरण का चि्न (जैसा कि उपरोक्त बिंदु 1 में बतलाया गया है) अक्ष के धनात्मक दिशा के चयन पर निर्भर करता है । उदाहरण के तौर पर यदि ऊपर की ओर ऊर्ध्वाधर दिशा को अक्ष की धनात्मक दिशा माना जाए तो गुरुत्वजनित त्वरण ऋणात्मक होगा। यदि कोई वस्तु गुरुत्व के कारण नीचे की ओर गिर रही है तो भी वस्तु की चाल बढ़ती जाएगी यद्यपि त्वरण का मान ऋणात्मक है। वस्तु ऊपर की दिशा में फेंकी जाए तो उसी ॠणात्मक (गुरुत्वजनित) त्वरण के कारण वस्तु की चाल में कमी आती जाएगी।
4. यदि किसी क्षण वस्तु का वेग शून्य है तो यह आवश्यक नहीं है कि उस क्षण उसका त्वरण भी शून्य हो । कोई वस्तु क्षणिक रूप से विरामावस्था में हो सकती है तथापि उस क्षण उसका त्वरण शून्य नहीं होगा । उदाहरणस्वरूप, यदि किसी वस्तु को ऊपर की ओर फेंका जाए तो शीर्षस्थ बिंदु पर उसका वेग तो शून्य होगा परंतु इस अवसर पर उसका त्वरण गुरुत्वजनित त्वरण ही होगा ।
5. गति संबंधी शुद्धगतिक समीकरणों [समीकरण (2.9)] की विभिन्न राशियाँ बीजगणितीय हैं अर्थात वे धनात्मक या ऋणात्मक हो सकती हैं। ये समीकरण सभी परिस्थितियों (स्थिर त्वरण वाली एकविमीय गति) के लिए उपयुक्त होते हैं बशर्ते समीकरणों में विभिन्न राशियों के मान उपयुक्त चिह्नों के साथ रखे जाएँ ।
6. तात्क्षणिक वेग तथा त्वरण की परिभाषाएँ [समीकरण (2.1) तथा समीकरण (2.3)] यथार्थ हैं और सदैव सही हैं जबकि शुद्धगतिक समीकरण [समीकरण (2.9)] उन्हीं गतियों के लिए सही है जिनमें गति की अवधि में त्वरण का परिमाण और दिशा स्थिर रहते हैं ।