अध्याय 01 मात्रक एवं मापन
1.1 भूमिका
किसी भौतिक राशि का मापन, एक निश्चित, आधारभूत, यादृच्छिक रूप से चुने गए मान्यताप्राप्त, संदर्भ-मानक से इस राशि की तुलना करना है। यह संदर्भ-मानक मात्रक कहलाता है। किसी भी भौतिक राशि की माप को मात्रक के आगे एक संख्या (आंकिक संख्या) लिखकर व्यक्त किया जाता है। यद्यपि हमारे द्वारा मापी जाने वाली भौतिक राशियों की संख्या बहुत अधिक है, फिर भी, हमें इन सब भौतिक राशियों को व्यक्त करने के लिए, मात्रकों की सीमित संख्या की ही आवश्यकता होती है, क्योंकि, ये राशियाँ एक दूसरे से परस्पर संबंधित हैं। मूल राशियों को व्यक्त करने के लिए प्रयुक्त मात्रकों को मूल मात्रक कहते हैं। इनके अतिरिक्त अन्य सभी भौतिक राशियों के मात्रकों को मूल मात्रकों के संयोजन द्वारा व्यक्त किया जा सकता है। इस प्रकार प्राप्त किए गए व्युत्पन्न राशियों के मात्रकों को व्युत्पन्न मात्रक कहते हैं। मूल-मात्रकों और व्युत्पन्न मात्रकों के सम्पूर्ण समुच्चय को मात्रकों की प्रणाली (या पद्धति) कहते हैं।
1.2 मात्रकों की अंतर्राष्ट्रीय प्रणाली
बहुत वर्षों तक मापन के लिए, विभिन्न देशों के वैज्ञानिक, अलग-अलग मापन प्रणालियों का उपयोग करते थे। अब से कुछ समय-पूर्व तक ऐसी तीन प्रणालियाँ - CGS प्रणाली, FPS (या ब्रिटिश) प्रणाली एवं MKS प्रणाली, प्रमुखता से प्रयोग में लाई जाती थीं।
इन प्रणालियों में लम्बाई, द्रव्यमान एवं समय के मूल मात्रक क्रमशः इस प्रकार हैं :
- CGS प्रणाली में, सेन्टीमीटर, ग्राम एवं सेकन्ड।
- FPS प्रणाली में, फुट, पाउन्ड एवं सेकन्ड।
- MKS प्रणाली में, मीटर, किलोग्राम एवं सेकन्ड।
आजकल अंतर्राष्ट्रीय स्तर पर मान्य प्रणाली “सिस्टम इन्टरनेशनल डि यूनिट्स” है (जो फ्रेंच भाषा में “मात्रकों की अंतर्राष्ट्रीय प्रणाली” कहना है)। इसे संकेताक्षर में SI लिखा जाता है। SI प्रतीकों, मात्रकों और उनके संकेताक्षरों की योजना अंतर्राष्ट्रीय माप-तोल ब्यूरो (बी.आई.पी.एम.) द्वारा 1971 में विकसित की गई थी एवं नवंबर, 2018 में आयोजित माप-तोल के महासम्मेलन में संशोधित की गई। यह योजना अब वैज्ञानिक, तकनीकी, औद्योगिक एवं व्यापारिक कार्यों में अंतर्राष्ट्रीय स्तर पर उपयोग हेतु अनुमोदित की गई। SI मात्रकों की 10 की घातों
पर आधारित (दाश्मिक) प्रकृति के कारण, इस प्रणाली के अंतर्गत रूपांतरण अत्यंत सुगम एवं सुविधाजनक है। हम इस पुस्तक में SI मात्रकों का ही प्रयोग करेंगे।
SI में सात मूल मात्रक हैं, जो सारणी 1.1 में दिए गए हैं। इन सात मूल मात्रकों के अतिरिक्त दो पूरक मात्रक भी हैं जिनको हम इस प्रकार परिभाषित कर सकते हैं : (i) समतलीय कोण,
सारणी 1.1 SI मूल राशियाँ एवं उनके मात्रक*
(b)
चित्र 1.1 (a) समतलीय कोण
मूल राशि |
SI मात्रक | ||
---|---|---|---|
नाम | प्रतीक | परिभाषा | |
लंबाई | मीटर | मीटर, संकेत m, लंबाई का SI मात्रक है। इसे निर्वात में प्रकाश की चाल 299792458 को लेकर, जो कि सीज़ियम आवृत्ति |
|
द्रव्यमान | किलोग्राम | किलोग्राम, संकेत J.S. |
|
समय | सेकंड | s | सेकंड, संकेत S, समय का SI मात्रक है। इसकी परिभाषा सीज़ियम आवृत्ति परमाणु की अक्षुब्ध मूल अवस्था अतिसूक्ष्म संक्रमण आवृत्ति है, के नियत संख्यात्मक मान 9192631770 को लेकर, जिसे |
विद्युत धारा | ऐम्पियर | A | ऐम्पियर, संकेत मान के पदों में व्यक्त किया गया है; दी जाती है। |
ऊष्मागतिक ताप | केल्विन | K | केल्विन, संकेत नियत संख्यात्मक मान किया जाता है; दी गई है। |
पदार्थ की मात्रा | मोल | mol | मोल, संकेत मोल ही मूलभूत कण होते हैं। यह संख्या, आवोगाद्रो स्थिरांक, उसे पदार्थ की मात्रा, संकेत अणु, आयन, इलेक्ट्रॉन, कोई अन्य कण या कणों के विशिष्ट समूह हो सकते हैं। |
ज्योति-तीव्रता | केंडेला | cd | ![]() |
इन परिभाषाओं में प्रयुक्त संख्याओं के मान, न तो याद रखने की आवश्यकता है, न परीक्षा में पूछे जाने की। ये यहाँ पर केवल इनके मापन की यथार्थता की सीमा का संकेत देने के लिए दिए गए हैं। प्रौद्योगिकी के विकास के साथ मापन की तकनीकों में भी सुधार होता है, परिणामस्वरूप, मापन अधिक परिशुद्धता से होता है। इस प्रगति के साथ तालमेल बनाए रखने के लिए मूल मात्रकों को संशोधित किया जाता है।
सारणी 1.2 सामान्य प्रयोग के लिए SI मात्रकों के अतिरिक्त कुछ अन्य मात्रक
नाम | प्रतीक | SI मात्रक के पदों में मान |
---|---|---|
मिनट | ||
घंटा | ||
दिन | ||
वर्ष | ||
डिग्री | ||
लिटर | ||
टन | ||
कैरट | ||
बार | ||
क्यूरी | ||
रोंजन | ||
क्विंटल | ||
बार्न | ||
आर | ||
हेक्टार | ||
मानक वायुमंडलीय दाब |
ध्यान दीजिए, मोल का उपयोग करते समय मूल सत्ताओं का विशेष रूप से उल्लेख किया जाना चाहिए। ये मूल सत्ताएँ परमाणु, अणु, आयन, इलेक्ट्रॉन, अन्य कोई कण अथवा इसी प्रकार के कणों का विशिष्ट समूह हो सकता है।
हम ऐसी भौतिक राशियों के मात्रकों का भी उपयोग करते हैं जिन्हें सात मूल राशियों से व्युत्पन्न किया जा सकता है (परिशिष्ट A 6)। SI मूल मात्रकों के पदों में व्यक्त कुछ व्युत्पन्न मात्रक (परिशिष्ट A 6.1) में दिए गए हैं। कुछ व्युत्पन्न SI मात्रकों को विशिष्ट नाम दिए गए हैं (परिशिष्ट A 6.2) और कुछ व्युत्पन्न SI मात्रक इन विशिष्ट नामों वाले व्युत्पन्न मात्रकों और सात मूल-मात्रकों के संयोजन से बनते हैं (परिशिष्ट A 6.3)। आपको तात्कालिक संदर्भ तथा मार्गदर्शन प्रदान करने के लिए इन मात्रकों को परिशिष्ट (A 6.2) एवं (A 6.3) में दिया गया है। सामान्य व्यवहार में आने वाले अन्य मात्रक सारणी 1.2 में दिए गए हैं।
SI मात्रकों के सामान्य गुणज और अपवर्तकों को व्यक्त करने वाले उपसर्ग और उनके प्रतीक परिशिष्ट (A2) में दिए गए हैं। भौतिक राशियों, रासायनिक तत्वों और नाभिकों के संकेतों के उपयोग संबंधी सामान्य निर्देश परिशिष्ट (A7) में दिए गए हैं और आपके मार्गदर्शन तथा तात्कालिक संदर्भ के लिए SI मात्रकों एवं अन्य मात्रकों संबंधी निर्देश परिशिष्ट (A8) में दिए गए हैं।
1.3 सार्थक अंक
जैसा कि ऊपर वर्णन किया जा चुका है, हर मापन में त्रुटियाँ सम्मिलित होती हैं। अतः मापन के परिणामों को इस प्रकार प्रस्तुत किया जाना चाहिए कि मापन की परिशुद्धता स्पष्ट हो जाए।
साधारणतः, मापन के परिणामों को एक संख्या के रूप में प्रस्तुत करते हैं जिसमें वह सभी अंक सम्मिलित होते हैं जो विश्वसनीय हैं, तथा वह प्रथम अंक भी सम्मिलित किया जाता है जो अनिश्चित है। विश्वसनीय अंकों और पहले अनिश्चित अंक को संख्या के सार्थक-अंक माना जाता है। यदि हम कहें कि किसी सरल लोलक का दोलन काल
किसी संख्या में सार्थक अंकों की संख्या ज्ञात करने के नियम निम्नलिखित उदाहरणों द्वारा समझे जा सकते हैं। जैसा पहले वर्णन किया जा चुका है कि सार्थक अंक मापन की परिशुद्धता इंगित करते हैं जो मापक यंत्र के अल्पतमांक पर निर्भर करती है। किसी मापन में विभिन्न मात्रकों के परिवर्तन के चयन से सार्थक अंकों की संख्या परिवर्तित नहीं होती। यह महत्वपूर्ण टिप्पणी निम्नलिखित में से अधिक प्रेक्षणों को स्पष्ट कर देती है:
(1) उदाहरण के लिए, लम्बाई
हैं। परन्तु विभिन्न मात्रकों में इसी लम्बाई को हम 0.02308
इन सभी संख्याओं में सार्थक अंकों की संख्या वही अर्थात चार (अंक
- सभी शून्येतर अंक सार्थक अंक होते हैं।
- यदि किसी संख्या में दशमलव बिन्दु है, तो उसकी स्थिति का ध्यान रखे बिना, किन्हीं दो शून्येतर अंकों के बीच के सभी शून्य सार्थक अंक होते हैं।
- यदि कोई संख्या 1 से छोटी है तो वे शून्य जो दशमलव के दाईं ओर पर प्रथम शून्येतर अंक के बाईं ओर हों, सार्थक अंक नहीं होते। (
में अधोरेखांकित शून्य सार्थक अंक नहीं हैं)। - ऐसी संख्या जिसमें दशमलव नहीं है के अंतिम अथवा अनुगामी शून्य सार्थक अंक नहीं होते।
(अतः
- एक ऐसी संख्या, जिसमें दशमलव बिन्दु हो, के अनुगामी शून्य सार्थक अंक होते हैं। (संख्या 3.500 या 0.06900 में चार सार्थक अंक हैं)।
(2) अनुगामी शून्य सार्थक अंक हैं या नहीं इस विषय में भ्रांति हो सकती है। मान लीजिए किसी वस्तु की लम्बाई
(3) सार्थक अंकों के निर्धारण में इस प्रकार की संदिग्धता को दूर करने के लिए सर्वोत्तम उपाय यह है कि प्रत्येक माप को वैज्ञानिक संकेत ( 10 की घातों के रूप में) में प्रस्तुत किया जाए। इस संकेत पद्धति में प्रत्येक संख्या को
प्रायः एक अंक के बाद दशमलव लगाने की प्रथा है। इससे ऊपर प्रेक्षण (a) में उल्लिखित भ्रांति लुप्त हो जाता है :
यहाँ सार्थक अंकों की संख्या ज्ञात करने में 10 की घात असंगत है। तथापि, वैज्ञानिक संकेत में आधार संख्या के सभी शून्य सार्थक अंक होते हैं। इस प्रकरण में सभी संख्याओं में 4 सार्थक अंक हैं।
इस प्रकार, वैज्ञानिक संकेत में आधार संख्या
(4) किसी भी मापन के प्रस्तुतिकरण की वैज्ञानिक संकेत विधि एक आदर्श विधि है। परन्तु यदि यह विधि नहीं अपनायी जाती, तो हम पूर्वगामी उदाहरण में उल्लिखित नियमों का पालन करते हैं :
- एक से बड़ी, बिना दशमलव वाली संख्या के लिए, अनुगामी शून्य सार्थक-अंक नहीं हैं।
- दशमलव वाली संख्या के लिए अनुगामी शून्य सार्थक अंक हैं।
(5) 1 से छोटी संख्या में, पारस्परिक रूप से, दशमलव के बाईं ओर लिखा शून्य (जैसे 0.1250 ) कभी भी सार्थक अंक नहीं होता। तथापि, किसी माप में ऐसी संख्या के अंत में आने वाले शून्य सार्थक अंक होते हैं।
(6) गुणक या विभाजी कारक जो न तो पूर्णांकित संख्याएँ होती हैं और न ही किसी मापित मान को निरूपित करती हैं, यथार्थ होती हैं और उनमें अनन्त सार्थक-अंक होते हैं। उदाहरण के लिए
यथार्थ संख्या है और इसे
1.3.1 सार्थक अंकों से संबंधित अंकीय संक्रियाओं के नियम
किसी परिकलन का परिणाम, जिसमें राशियों के सन्निकट मापे गए मान सम्मिलित हैं (अर्थात् वे मान जिनमें सार्थक अंकों की संख्या सीमित है) व्यक्त करते समय, मूल रूप से मापे गए मानों की अनिश्चितता भी प्रतिबिम्बित होनी चाहिए। यह परिणाम, उन मापित मानों से अधिक यथार्थ नहीं हो सकता जिन पर यह आधारित है। अतः, व्यापक रूप से, किसी भी परिणाम में सार्थक अंकों की संख्या, उन मूल आंकड़ों से अधिक नहीं हो सकती जिनसे इसे प्राप्त किया गया है। इस प्रकार, यदि किसी पिण्ड का मापित द्रव्यमान मान लीजिए
(1) संख्याओं को गुणा या भाग करने से प्राप्त परिणाम में केवल उतने ही सार्थक अंक रहने देना चाहिए जितने कि सबसे कम सार्थक अंकों वाली मूल संख्या में है।
अतः उपरोक्त उदाहरण में घनत्व को तीन सार्थक अंकों तक ही लिखा जाना चाहिए,
इसी प्रकार, यदि दी गई प्रकाश कीचाल
(2) संख्याओं के संकलन अथवा व्यवकलन से प्राप्त अंतिम परिणाम में दशमलव के बाद उतने ही सार्थक अंक रहने देने चाहिए जितने कि संकलित या व्यवकलित की जाने वाली किसी राशि में दशमलव के बाद कम से कम हैं।
उदाहरणार्थ, संख्याओं
इसी प्रकार, लम्बाइयों में अंतर को निम्न प्रकार से व्यक्त कर सकते हैं,
ध्यान दीजिए, हमें नियम (1) जो गुणा और भाग के लिए लागू होता है, उसे संकलन (योग) के उदाहरण में प्रयोग करके परिणाम को
1.3.2 अनिश्चित अंकों का पूर्णांकन
जिन संख्याओं में एक से अधिक अनिश्चित अंक होते हैं, उनके अभिकलन के परिणाम का पूर्णांकन किया जाना चाहिए। अधिकांश प्रकरणों में, संख्याओं को उचित सार्थक अंकों तक पूर्णांकित करने के नियम स्पष्ट ही हैं। संख्या
किसी भी उलझन वाले अथवा बहुपदी जटिल परिकलन में, मध्यवर्ती पदों में सार्थक अंकों से एक अंक अधिक रहने देना चाहिए, जिसे परिकलन के अंत में उचित सार्थक अंकों तक पूर्णांकित कर देना चाहिए। इसी प्रकार, एक संख्या जो कई सार्थक अंकों तक ज्ञात है, जैसे निर्वात में प्रकाश का वेग, जिसके लिए, प्राय:
में ध्यान रखिये कि सूत्रों में उपयोग होने वाली यथार्थ संख्याएं, जैसे
1.3.3 अंकगणितीय परिकलनों के परिणामों में अनिश्चितता
निर्धारित करने के नियमअंकीय संक्रियाओं में संख्याओं/ मापित राशियों में अनिश्चितता या त्रुटि निर्धारित करने संबंधी नियमों को निम्नलिखित उदाहरणों के द्वारा समझा जा सकता है।
(1) यदि किसी पतली, आयताकार शीट की लम्बाई और चौड़ाई, किसी मीटर पैमाने से मापने पर क्रमशः
इसी प्रकार, चौड़ाई को इस प्रकार लिखा जा सकता है
तब, त्रुटि संयोजन के नियम का उपयोग करने पर, दो (या अधि
क) प्रायोगिक मापों के गुणनफल की त्रुटि
इस उदाहरण के अनुसार हम अंतिम परिणाम को इस प्रकार लिखेंगे
यहाँ,
(2) यदि किसी प्रायोगिक आंकड़े के समुच्चय में
तथापि, यदि आंकड़े घटाये जाते हैं तो सार्थक अंकों की संख्या कम की जा सकती है। उदाहरणार्थ,
(3) किसी संख्या के मान में आपेक्षिक त्रुटि, जो विनिर्दिष्ट सार्थक अंकों तक दी गई है, न केवल
उदाहरणार्थ, द्रव्यमान
1.02 में आपेक्षिक त्रुटि
इसी प्रकार
अंत में, याद रखिए कि बहुपदीय अभिकलन के मध्यवर्ती परिणाम को परिकलित करने में प्रत्येक माप को, अल्पतम परिशुद्ध माप से एक सार्थक अंक अधिक रखना चाहिए। आंकड़ों के अनुसार इसे तर्कसंगत करने के बाद ही इनकी अंकीय संक्रियाएँ करना चाहिए अन्यथा पूर्णांकन की त्रुटियाँ उत्पन्न हो जाएंगी। उदाहरणार्थ, 9.58 के व्युत्क्रम का तीन सार्थक अंकों तक पूर्णांकन करने पर मान 0.104 है, परन्तु 0.104 का व्युत्क्रम करने पर तीन सार्थक अंकों तक प्राप्त मान 9.62 है। पर यदि हमने
उपरोक्त उदाहरण, जटिल बहुपदी परिकलन के मध्यवर्ती पदों में (कम से कम परिशुद्ध माप में अंकों की संख्या की अपेक्षा) एक अतिरिक्त अंक रखने की धारणा को न्यायसंगत ठहराता है, जिससे कि संख्याओं की पूर्णांकन प्रक्रिया में अतिरिक्त त्रुटि से बचा जा सके।
1.4 भौतिक राशियों की विमाएँ
किसी भौतिक राशि की प्रकृति की व्याख्या उसकी विमाओं द्वारा की जाती है। व्युत्पन्न मात्रकों द्वारा व्यक्त होने वाली सभी भौतिक राशियाँ, सात मूल राशियों के संयोजन के पदों में प्रस्तुत की जा सकती हैं। इन मूल राशियों को हम भौतिक संसार की सात विमाएँ कह सकते हैं और इन्हें गुरु कोष्ठक के साथ निर्दिष्ट किया जाता है। इस प्रकार, लम्बाई की विमा [L], विद्युत धारा की [A], ऊष्मागतिकीय ताप की [K], ज्योति तीव्रता की [cd], और पदार्थ की मात्रा की [mol] है। किसी भौतिक राशि की विमाएँ उन घातों (या घातांकों) को कहते हैं, जिन्हें उस राशि को व्यक्त करने के लिए मूल राशियों पर चढ़ाना पड़ता है। ध्यान दीजिए किसी राशि को गुरु कोष्ठक [ ] से घेरने का यह अर्थ है कि हम उस राशि की विमा पर विचार कर रहे हैं।
यांत्रिकी में, सभी भौतिक राशियों को विमाओं [L], [M] और
इसी प्रकार, बल को द्रव्यमान और त्वरण के गुणनफल के रूप में इस प्रकार व्यक्त कर सकते हैं,
बल
ध्यान दीजिए, इस प्रकार के प्रस्तुतीकरण में परिमाणों पर विचार नहीं किया जाता। इसमें भौतिक राशियों के प्रकार की गुणता का समावेश होता है। इस प्रकार, इस संदर्भ में वेग परिवर्तन, प्रारंभिक वेग, औसत वेग, अंतिम वेग और चाल, ये सभी तुल्य राशियाँ हैं, क्योंकि ये सभी राशियाँ लम्बाई/समय के रूप में व्यक्त की जा सकती हैं और इनकी विमाएँ
1.5 विमीय सूत्र एवं विमीय समीकरणें
किसी दी हुई भौतिक राशि का विमीय सूत्र वह व्यंजक है जो यह दर्शाता है कि किसी भौतिक राशि में किस मूल राशि की कितनी विमाएँ हैं। उदाहरणार्थ, आयतन का विमीय सूत्र
किसी भौतिक राशि को उसके विमीय सूत्र के बराबर लिखने पर प्राप्त समीकरण को उस राशि का विमीय समीकरण कहते हैं। अतः विमीय समीकरण वह समीकरण है जिसमें किसी भौतिक राशि को मूल राशियों और उनकी विमाओं के पदों में निरूपित किया जाता है। उदाहरण के लिए, आयतन
भौतिक राशियों के बीच संबंध निरूपित करने वाले समीकरण के आधार पर विमीय समीकरण, व्युत्पन्न की जा सकती है। विविध प्रकार की बहुत सी भौतिक राशियों के विमीय सूत्र, जिन्हें अन्य भौतिक राशियों के मध्य संबंधों को निरूपित करने वाले समीकरणों से व्युत्पन्न तथा मूल राशियों के पदों में व्यक्त किया गया है, आपके मार्गदर्शन एवं तात्कालिक संदर्भ के लिए परिशिष्ट-9 में दिए गए हैं।
1.6 विमीय विश्लेषण एवं इसके अनुप्रयोग
विमाओं की संकल्पना की स्वीकृति, जो भौतिक व्यवहार के वर्णन में मार्गदर्शन करती है, अपना एक आधारिक महत्व रखती है क्योंकि इसके अनुसार केवल वही भौतिक राशियाँ संकलित या व्यवकलित की जा सकती हैं जिनकी विमाएँ समान हैं।
विमीय विश्लेषण का व्यापक ज्ञान, विभिन्न भौतिक राशियों के बीच संबंधों के निगमन में सहायता करता है और विभिन्न गणितीय व्यंजकों की व्युत्पत्ति, यथार्थता तथा विमीय संगतता की जाँच करने में सहायक है। जब दो या अधिक भौतिक राशियों के परिमाणों को गुणा (या भाग) किया जाता है, तो उनके मात्रकों के साथ उस प्रकार का व्यवहार किया जाना चाहिए जैसा हम सामान्य बीज-गणितीय प्रतीकों के साथ करते हैं। अंश और हर से सर्वसम मात्रकों को हम निरसित कर सकते हैं। यही बात भौतिक राशि की विमाओं के साथ भी लागू होती है। इसी प्रकार, किसी गणितीय समीकरण में पक्षों में प्रतीकों द्वारा निरूपित भौतिक राशियों की विमाएँ समान होनी चाहिए।
1.6.1 समीकरणों की विमीय संगति की जाँच
भौतिक राशियों के परिमाण केवल तभी संकलित या व्यवकलित किए जा सकते हैं यदि उनकी विमाएँ समान हों। दूसरे शब्दों में, हम केवल एक ही प्रकार की राशियों का संकलन या व्यवकलन कर सकते हैं। अतः बल को वेग के साथ संकलित या ऊष्मा गतिक ताप में से विद्युत धारा को व्यवकलित नहीं किया जा सकता। इस सरल सिद्धांत को विमाओं की समघातता सिद्धांत कहते हैं और इसकी सहायता से किसी समीकरण की संशुद्धि की जाँच कर सकते हैं। यदि किसी समीकरण के सभी पदों की विमाएँ समान नहीं हैं तो वह समीकरण गलत होती है। अतः यदि हम किसी पिण्ड की लम्बाई (या दूरी) के लिए व्यंजक व्युत्पन्न करें, तो चाहे उसमें सम्मिलित प्रतीक कुछ भी हों, उनकी विमाओं को सरल करने पर अंत में प्रत्येक पद में लम्बाई की विमा ही शेष रहनी चाहिए। इसी प्रकार, यदि हम चाल के लिए समीकरण व्युत्पन्न करें, तो इसके दोनों पक्षों के पदों का विमीय-सूत्र सरलीकरण के बाद
यदि किसी समीकरण की संशुद्धि में संदेह हो तो उस समीकरण की संगति की प्राथमिक जांच के लिए मान्य प्रथा के अनुसार विमाओं का उपयोग किया जाता है। किन्तु, विमीय संगति किसी समीकरण के सही होने की गारंटी नहीं है। यह अविम राशियों या फलनों की अनिश्चितता सीमा तक अनिश्चित होती है। त्रिकोणमितीय, लघुगणकीय और चरघातांकी फलनों जैसे विशिष्ट फलनों के कोणांक अविम होने चाहिए। एक शुद्ध संख्या, समान भौतिक राशियों का अनुपात, जैसे अनुपात के रूप में कोण (लम्बाई/लम्बाई), अनुपात के रूप में अपवर्तनांक (निर्वात में प्रकाश का वेग/माध्यम में प्रकाश का वेग) आदि की कोई विमाएँ नहीं होतीं।
अब, हम निम्नलिखित समीकरण की विमीय संगति या समांगता की जाँच कर सकते हैं
जहाँ
प्रत्येक पद के लिए विमीय समीकरण लिखने पर,
क्योंकि इस समीकरण के सभी पदों की विमाएँ समान (लम्बाई की) हैं, इसलिए यह विमीय दृष्टि से संगत समीकरण है।
यहाँ ध्यान देने योग्य तथ्य यह है, कि विमीय संगति परीक्षण, मात्रकों की संगति से कम या अधिक कुछ नहीं बताता। लेकिन, इसका लाभ यह है कि हम मात्रकों के किसी विशेष चयन के लिए बाध्य नहीं हैं और न ही हमें मात्रकों के पारस्परिक गुणजों या अपवर्तकों में रूपांतरण की चिन्ता करने की आवश्यकता है। यह बात भी हमें स्पष्ट करनी चाहिए कि यदि कोई समीकरण संगति परीक्षण में असफल हो जाती है तो वह गलत सिद्ध हो जाती है, परन्तु यदि वह परीक्षण में सफल हो जाती है तो इससे वह सही सिद्ध नहीं हो जाती। इस प्रकार कोई विमीय रूप से सही समीकरण आवश्यक रूप से यथार्थ ( सही ) समीकरण नहीं होती, जबकि विमीय रूप से गलत या असंगत समीकरण गलत होनी चाहिए।
1.6.2 विभिन्न भौतिक राशियों के मध्य संबंध व्युत्पन्न करना
कभी-कभी विभिन्न भौतिक राशियों के बीच संबंध व्युत्पन्न करने के लिए विमाओं की विधि का उपयोग किया जा सकता है। इसके लिए हमें यह ज्ञात होना चाहिए कि एक भौतिक राशि किन-किन दूसरी भौतिक राशियों पर निर्भर करती है (तीन भौतिक राशियों या एकघाततः स्वतंत्र चरों तक)। इसके लिए, हम दी गई राशि को निर्भर राशियों की विभिन्न घातों के गुणनफल के रूप में लिखते हैं। आइये, एक उदाहरण द्वारा इस प्रक्रिया को समझें।
परस्पर संबंधित राशियों के बीच संबंध व्युत्पन्न करने के लिए विमीय विश्लेषण काफी उपयोगी है। तथापि विमाहीन स्थिरांकों के मान इस विधि द्वारा ज्ञात नहीं किए जा सकते। विमीय विधि द्वारा किसी समीकरण की केवल विमीय वैधता ही जांची जा सकती है, किसी समीकरण में विभिन्न भौतिक राशियों के बीच यथार्थ संबंध नहीं जांचे जा सकते। यह समान विमा वाली राशियों में विभेद नहीं कर सकती।
इस अध्याय के अंत में दिए गए कई अभ्यास प्रश्न, आपकी विमीय विश्लेषण की कुशलता विकसित करने में सहायक होंगे।
सारांश
1. भौतिक विज्ञान भौतिक राशियों के मापन पर आधारित एक परिमाणात्मक विज्ञान है । कुछ भौतिक राशियां जैसे लंबाई, द्रव्यमान, समय, विद्युत धारा, ऊष्मागतिक ताप, पदार्थ की मात्रा और ज्योति-तीव्रता, मूल राशियों के रूप में चुनी गई हैं।
2. प्रत्येक मूल राशि किसी मूल मात्रक (जैसे मीटर, किलोग्राम, सेकंड, ऐम्पियर, केल्विन, मोल और कैंडेला) के पद में परिभाषित है । मूल मात्रक स्वेच्छा से चयनित परंतु समुचित रूप से मानकीकृत निर्देश मानक होते हैं । मूल राशियों के मात्रकों को मूल मात्रक कहते हैं।
3. मूल राशियों से व्युत्पन्न अन्य भौतिक राशियों को मूल मात्रकों के संयोजन के रूप में व्यक्त कर सकते हैं, जिन्हें व्युत्पन्न मात्रक कहते हैं । मूल और व्युत्पन्न दोनों मात्रकों के पूर्ण समुच्चय को, मात्रक प्रणाली कहते हैं ।
4. सात मूल मात्रकों पर आधारित मात्रकों की अंतर्राष्ट्रीय प्रणाली (SI) वर्तमान में अंतर्राष्ट्रीय स्तर पर स्वीकृत प्रणाली है । यह प्रणाली समस्त संसार में व्यापक रूप से प्रयोग में लाई जाती है ।
5. मूल राशियों और व्युत्पन्न राशियों से प्राप्त सभी भौतिक मापों में SI मात्रकों का प्रयोग किया जाता है। कुछ व्युत्पन्न मात्रकों को SI मात्रकों में विशेष नामों (जैसे जूल, न्यूटन, वाट आदि) से व्यक्त किया जाता है ।
6.
7. प्राय: छोटी एवं बड़ी राशियों की भौतिक मापों को वैज्ञानिक संकेत में 10 की घातों में व्यक्त किया जाता है। माप संकेतों तथा आंकिक अभिकलनों की सरलता हेतु संख्याओं की परिशुद्धता का संकेत करते हुए वैज्ञानिक संकेत एवं पूर्वलग्नों का प्रयोग किया जाता है ।
8. भौतिक राशियों के संकेतन और SI मात्रकों के प्रतीकों, कुछ अन्य मात्रकों, भौतिक राशियों और मापों को उचित रूप से व्यक्त करने हेतु पूर्वलग्न के लिए कुछ सामान्य नियमों और निर्देशों का पालन करना चाहिए ।
9. किसी भी भौतिक राशि के अभिकलन में उसके मात्रक की प्राप्ति हेतु संबंध (संबंधों) में सम्मिलित व्युत्पन्न राशियों के मात्रकों को वांछित मात्रकों की प्राप्ति तक बीजगणितीय राशियों की भांति समझना चाहिए ।
10. मापित एवं अभिकलित राशियों में केवल उचित सार्थक अंकों को ही रखा रहने देना चाहिए। किसी भी संख्या में सार्थक अंकों की संख्या का निर्धारण, उनके साथ अंकीय संक्रियाओं को करने और अनिश्चित अंकों का निकटन करने में इनके लिए बनाए गए नियमों का पालन करना चाहिए ।
11. मूल राशियों की विमाओं और इन विमाओं का संयोजन भौतिक राशियों की प्रकृति का वर्णन करता है । समीकरणों की विमीय संगति की जांच और भौतिक राशियों में संबंध व्युत्पन्न करने में विमीय विश्लेषण का प्रयोग किया जा सकता है। कोई विमीय संगत समीकरण वास्तव में सही हो, यह आवश्यक नहीं है परंतु विमीय रूप से गलत या असंगत समीकरण गलत ही होगी ।