सांख्यिकी
13.1 भूमिका
कक्षा IX में, आप दिए हुए आँकड़ों को अवर्गीकृत एवं वर्गीकृत बारंबारता बंटनों में व्यवस्थित करना सीख चुके हैं। आपने आँकड़ों को चित्रीय रूप से विभिन्न आलेखों, जैसे दंड आलेख, आयत चित्र (इनमें असमान चौड़ाई वाले वर्ग अंतराल भी सम्मिलित थे) और बारंबारता बहुभुजों के रूप में निरूपित करना भी सीखा था। तथ्य तो यह है कि आप अवर्गीकृत आँकड़ों के कुछ संख्यात्मक प्रतिनिधि (numerical representives) ज्ञात करके एक कदम आगे बढ़ गए थे। इन संख्यात्मक प्रतिनिधियों को केंद्रीय प्रवृत्ति के मापक (measures of central tendency) कहते हैं। हमने ऐसे तीन मापकों अर्थात् माध्य (mean), माध्यक (median) और बहुलक (mode) का अध्ययन किया था। इस अध्याय में, हम इन तीनों मापकों, अर्थात् माध्य, माध्यक और बहुलक, का अध्ययन अवर्गीकृत आँकड़ों से वर्गीकृत आँकड़ों के लिए आगे बढ़ाएँगे। हम संचयी बारंबारता (cumulative frequency) और संचयी बारंबारता सारणी की अवधारणाओं की चर्चा भी करेंगे तथा यह भी सीखेंगे कि संचयी बारंबारता वक्रों (cumulative frequency curves), जो तोरण (ogives) कहलाती हैं, को किस प्रकार खींचा जाता है।
13.2 वर्गीकृत आँकड़ों का माध्य
जैसाकि हम पहले से जानते हैं, दिए हुए प्रेक्षणों का माध्य (या औसत) सभी प्रेक्षणों के मानों के योग को प्रेक्षणों की कुल संख्या से भाग देकर प्राप्त किया जाता है। कक्षा IX से, याद कीजिए कि यदि प्रेक्षणों
अब, सभी प्रेक्षणों के मानों का योग
अतः, इनका माध्य
याद कीजिए कि उपरोक्त को संक्षिप्त रूप में एक यूनानी अक्षर
इसे और अधिक संक्षिप्त रूप में,
आइए इस सूत्र का निम्नलिखित उदाहरण में माध्य ज्ञात करने के लिए उपयोग करें।
माध्य ज्ञात करने की उपरोक्त विधि कल्पित माध्य विधि (assumed mean method) कहलाती है।
क्रियाकलाप 1 : सारणी 13.3 से, प्रत्येक
अतः, हम यह कह सकते हैं कि प्राप्त किए गए माध्य का मान चुने हुए ’
ध्यान दीजिए कि सारणी 13.4 के स्तंभ में दिए सभी मान 15 के गुणज (multiples) हैं। अतः, यदि हम स्तंभ 4 के सभी मानों को 15 से भाग दे दें, तो हमें
अत: आइए मान लें कि
अब हम सभी
सारणी 13.5
वर्ग अंतराल | |||||
---|---|---|---|---|---|
2 | 17.5 | -30 | -2 | -4 | |
3 | 32.5 | -15 | -1 | -3 | |
7 | 47.5 | 0 | 0 | 0 | |
6 | 62.5 | 15 | 1 | 6 | |
6 | 77.5 | 30 | 2 | 12 | |
6 | 92.5 | 45 | 3 | 18 | |
मान लीजिए
यहाँ भी हम
हमें प्राप्त है
अत :
अत :
अब, सारणी 14.5 से
अतः, विद्यार्थियों द्वारा प्राप्त किया गया माध्य अंक 62 है।
माध्य ज्ञात करने की उपरोक्त विधि पग-विचलन विधि (step deviation method) कहलाती है।
ध्यान दीजिए कि
- पग-विचलन विधि तभी सुविधाजनक होगी, जबकि सभी
में कोई सार्व गुणनखंड है। - तीनों विधियों से प्राप्त माध्य एक ही है।
- कल्पित माध्य विधि और पग-विचलन विधि प्रत्यक्ष विधि के ही सरलीकृत रूप हैं।
- सूत्र
का तब भी प्रयोग किया जा सकता है, जबकि और ऊपर दी हुई संख्याओं की भाँति न हों, बल्कि वे शून्य के अतिरिक्त ऐसी वास्तविक संख्याएँ हों ताकि हो।
आइए इन विधियों का प्रयोग एक अन्य उदाहरण से करें।
सारणी 13.7
महिला शिक्षकों का प्रतिशत |
राज्यों / संघीय क्षेत्रों की संख्या |
||||||
---|---|---|---|---|---|---|---|
6 | 20 | -30 | -3 | 120 | -180 | -18 | |
11 | 30 | -20 | -2 | 330 | -220 | -22 | |
7 | 40 | -10 | -1 | 280 | -70 | -7 | |
4 | 50 | 0 | 0 | 200 | 0 | 0 | |
4 | 60 | 10 | 1 | 240 | 40 | 4 | |
2 | 70 | 20 | 2 | 140 | 40 | 4 | |
1 | 80 | 30 | 3 | 80 | 30 | 3 | |
योग | 35 | 1390 | -360 | -36 |
उपरोक्त सारणी से, हमें
प्रत्यक्ष विधि का प्रयोग करने से,
कल्पित माध्य विधि का प्रयोग करने से,
पग-विचलन विधि के प्रयोग से,
अतः, ग्रामीण क्षेत्रों के प्राथमिक विद्यालयों में महिला शिक्षकों का माध्य प्रतिशत 39.71 है।
टिप्पणी : सभी तीनों विधियों से प्राप्त परिणाम एक ही समान है। अतः, माध्य ज्ञात करने की विधि चुनना इस बात पर निर्भर करता है कि
आइए देखें कि इस अनुच्छेद में पढ़ी अवधारणाओं को आप किस प्रकार अनुप्रयोग कर सकते हैं।
क्रियाकलाप 2 :
अपनी कक्षा के विद्यार्थियों को तीन समूहों में बाँटिए और प्रत्येक समूह से निम्नलिखित में से एक क्रियाकलाप करने को कहिए :
1. आपके स्कूल द्वारा हाल ही में ली गई परीक्षा में, अपनी कक्षा के सभी विद्यार्थियों द्वारा गणित में प्राप्त किए गए अंक एकत्रित कीजिए। इस प्रकार प्राप्त आँकड़ों का एक वर्गीकृत बारंबारता बंटन सारणी बनाइए।
2. अपने शहर में 30 दिन का रिकॉर्ड किए गए दैनिक अधिकतम तापमान एकत्रित कीजिए। इन आँकड़ों को एक वर्गीकृत बारंबारता बंटन सारणी के रूप में प्रस्तुत कीजिए।
3. अपनी कक्षा के सभी विद्यार्थियों की ऊँचाइयाँ (cm में) मापिए और उनका एक वर्गीकृत बारंबारता बंटन सारणी बनाइए।
जब सभी समूह आँकड़े एकत्रित करके उनकी वर्गीकृत बारंबारता बंटन सारणियाँ बना लें, तब प्रत्येक समूह से अपने बारंबारता बंटन का माध्य निकालने को कहिए। इसमें वे जो विधि उपयुक्त समझें उसका प्रयोग करें।
13.3 वर्गीकृत आँकड़ों का बहुलक
कक्षा IX से याद कीजिए कि बहुलक (mode) दिए हुए प्रेक्षणों में वह मान है जो सबसे अधिक बार आता है, अर्थात् उस प्रेक्षण का मान जिसकी बारंबारता अधिकतम है। साथ ही, हमने अवर्गीकृत आँकड़ों के बहुलक ज्ञात करने की भी चर्चा कक्षा IX में की थी। यहाँ, हम वर्गीकृत आँकड़ों का बहुलक ज्ञात करने की विधि की चर्चा करेंगे। यह संभव है कि एक
से अधिक मानों की एक ही अधिकतम बारंबारता हो। ऐसी स्थितियों में, आँकड़ों को बहुबहुलकीय (multi modal) आँकड़े कहा जाता है। यद्यपि, वर्गीकृत आँकड़े भी बहुबहुलकीय हो सकते हैं, परंतु हम अपनी चर्चा को केवल एक ही बहुलक वाली समस्याओं तक ही सीमित रखेंगे।
आइए पहले एक उदाहरण की सहायता से यह याद करें कि अवर्गीकृत आँकड़ों का बहुलक हमने किस प्रकार ज्ञात किया था।
टिप्पणी:
1. उदाहरण 6 में, बहुलक माध्य से छोटा है। परंतु किन्हीं और समस्याओं (प्रश्नों) के लिए यह माध्य के बराबर या उससे बड़ा भी हो सकता है।
2. यह स्थिति की माँग पर निर्भर करता है कि हमारी रुचि विद्यार्थियों द्वारा प्राप्त किए गए औसत अंकों में है या फिर अधिकतम विद्यार्थियों द्वारा प्राप्त किए गए औसत अंकों में है। पहली स्थिति में, माध्य की आवश्यकता होगी तथा दूसरी स्थिति में बहुलक की आवश्यकता होगी।
क्रियाकलाप 3 : क्रियाकलाप 2 में बनाए गए समूहों और उनको निर्दिष्ट किए कार्यों के साथ क्रियाकलाप जारी रखिए। प्रत्येक समूह से आँकड़ों का बहुलक ज्ञात करने को कहिए। उनसे इसकी तुलना माध्य से करने को कहिए तथा दोनों के अर्थों की व्याख्या करने को कहिए। टिप्पणी: असमान वर्ग मापों वाले वर्गीकृत आँकड़ों का बहुलक भी परिकलित किया जा सकता है। परंतु यहाँ हम इसकी चर्चा नहीं करेंगे।
13.4 वर्गीकृत आँकड़ों का माध्यक
जैसाकि आप कक्षा IX में पढ़ चुके हैं, माध्यक (median) केंद्रीय प्रवृत्ति का ऐसा मापक है, जो आँकडों में सबसे बीच के प्रेक्षण का मान देता है। याद कीजिए कि अवर्गीकृत आँकडों का माध्यक ज्ञात करने के लिए, पहले हम प्रेक्षणों के मानों को आरोही क्रम में व्यवस्थित करते हैं। अब, यदि
माना, हमें निम्नलिखित आँकड़ों का माध्यक ज्ञात करना है जो एक परीक्षा में 100 विद्यार्थियों द्वारा 50 में से प्राप्त अंक देते हैं।
प्राप्तांक | 20 | 29 | 28 | 33 | 42 | 38 | 43 | 25 |
---|---|---|---|---|---|---|---|---|
विद्यार्थियों की संख्या | 6 | 28 | 24 | 15 | 2 | 4 | 1 | 20 |
पहले प्राप्त अंकों का आरोही क्रम तैयार करें और बारंबारता सारणी को निम्न प्रकार से बनाएँ।
सारणी 13.9
प्राप्तांक | विद्यार्थियों की संख्या बारंबारता |
---|---|
20 | 6 |
25 | 20 |
28 | 24 |
29 | 28 |
33 | 15 |
38 | 4 |
42 | 2 |
43 | 100 |
योग |
यहाँ
सारणी 13.10
प्राप्तांक | विद्यार्थियों की संख्या |
---|---|
20 | 6 |
25 तक | |
28 तक | |
29 तक | |
33 तक | |
38 तक | |
42 तक | |
43 तक |
अब हम इस सूचना को दर्शाता एक नया स्तंभ उपरोक्त बारंबारता सारणी में जोड़ते हैं तथा उसे संचयी बारंबारता स्तंभ का नाम देते हैं।
सारणी 13.11
प्राप्तांक | विद्यार्थियों की संख्या | संचयी बारंबारता |
---|---|---|
20 | 6 | 6 |
25 | 20 | 26 |
28 | 24 | 50 |
29 | 28 | 78 |
33 | 15 | 93 |
38 | 4 | 97 |
42 | 2 | 99 |
43 | 1 | 100 |
उपरोक्त सारणी से हम पाते हैं:
इसलिए,
टिप्पणी : सारणी 13.11 के भाग में सम्मिलित स्तंभ 1 और 3 संचयी बारंबारता सारणी के नाम से जाना जाता है। माध्यक अंक 28.5 सूचित करता है कि लगभग 50 प्रतिशत विद्यार्थियों ने 28.5 से कम अंक और दूसरे अन्य 50 प्रतिशत विद्यार्थियों ने 28.5 से अधिक अंक प्राप्त किए।
आइए देखें कि निम्नलिखित स्थिति में समूहित आँकड़े का माध्यक कैसे प्राप्त करते हैं।
निम्नानुसार एक निश्चित परीक्षा में 100 में 53 विद्यार्थियों द्वारा प्राप्त अंकों का समूहित बारंबारता बंटन पर विचार करें।
सारणी 13.12
प्राप्तांक | विद्यार्थियों की संख्या |
---|---|
5 | |
3 | |
4 | |
3 | |
3 | |
4 | |
7 | |
9 | |
7 |
उपरोक्त सारणी से निम्नलिखित प्रश्नों का उत्तर देने का प्रयास करें।
कितने विद्यार्थियों ने 10 से कम अंक प्राप्त किए हैं? स्पष्टतया, उत्तर 5 है।
कितने विद्यार्थियों ने 20 से कम अंक प्राप्त किए हैं? ध्यान दीजिए कि 20 से कम अंक प्राप्त करने वाले विद्यार्थियों में वे विद्यार्थी सम्मिलित हैं, जिन्होंने वर्ग
से कम अंक प्राप्त करने वाले विद्यार्थियों की कुल संख्या
इसी प्रकार, हम अन्य वर्गों की संचयी बारंबारताएँ भी ज्ञात कर सकते हैं, अर्थात् हम यह ज्ञात कर सकते हैं कि 30 से कम अंक प्राप्त करने वाले कितने विद्यार्थी हैं, 40 से कम अंक प्राप्त करने वाले कितने विद्यार्थी हैं, …, 100 से कम अंक प्राप्त करने वाले कितने विद्यार्थी हैं। हम इन्हें नीचे एक सारणी 13.13 के रूप में दे रहे हैं :
सारणी 13.13
प्राप्तांक | विद्यार्थियों की संख्या (संचयी बारंबारता ) |
---|---|
10 से कम | 5 |
20 से कम | |
30 से कम | |
40 से कम | |
50 से कम | |
60 से कम | |
70 से कम | |
80 से कम | |
90 से कम | |
100 से कम |
उपरोक्त बंटन से कम प्रकार का संचयी बारंबारता बंटन कहलाता है। यहाँ 10,20 ,
हम इसी प्रकार उन विद्यार्थियों की संख्याओं के लिए भी जिन्होंने 0 से अधिक या उसके बराबर अंक प्राप्त किए हैं, 10 से अधिक या उसके बराबर अंक प्राप्त किए हैं, 20 से अधिक या उसके बराबर अंक प्राप्त किए हैं, इत्यादि के लिए एक सारणी बना सकते हैं। सारणी 13.12 से हम देख सकते हैं कि सभी 53 विद्यार्थियों ने 0 से अधिक या 0 के बराबर अंक प्राप्त किए हैं। चूँकि अंतराल
सारणी 13.14
प्राप्तांक | विद्यार्थियों की संख्या ( संचयी बारंबारता ) |
---|---|
0 से अधिक या उसके बराबर | 53 |
10 से अधिक या उसके बराबर | |
20 से अधिक या उसके बराबर | |
30 से अधिक या उसके बराबर | |
40 से अधिक या उसके बराबर | |
50 से अधिक या उसके बराबर | |
60 से अधिक या उसके बराबर | |
70 से अधिक या उसके बराबर | |
80 से अधिक या उसके बराबर | |
90 से अधिक या उसके बराबर |
उपरोक्त सारणी या बंटन अधिक प्रकार का संचयी बारंबारता बंटन कहलाता है। यहाँ
अब, वर्गीकृत आँकड़ों का माध्यक ज्ञात करने के लिए, हम उपरोक्त दोनों प्रकार के संचयी बारंबारता बंटनों में से किसी बंटन का प्रयोग कर सकते हैं।
हम सारणी 13.12 और सारणी 13.13 को मिलाकर एक नयी सारणी 13.15 बना लें जो नीचे दी गई है :
सारणी 13.15
प्राप्तांक | विद्यार्थियों की संख्या |
संचयी बारंबारता (cf) |
---|---|---|
5 | 5 | |
3 | 8 | |
4 | 12 | |
3 | 15 | |
3 | 18 | |
4 | 22 | |
7 | 29 | |
9 | 38 | |
7 | 45 | |
8 | 53 |
अब, वर्गीकृत आँकड़ों के सबसे मध्य के प्रेक्षण को हम केवल संचयी बारंबारताएँ देख कर ही नहीं ज्ञात कर सकते, क्योंकि सबसे मध्य का प्रेक्षण किसी अंतराल में होगा। अतः, यह आवश्यक है कि इस मध्य प्रेक्षण को उस वर्ग अंतराल में खोजा जाए, जो आँकड़ों को दो बराबर भागों में विभक्त करता है। परंतु यह वर्ग अंतराल कौन-सा है?
इस अंतराल को ज्ञात करने के लिए, हम सभी वर्गों की संचयी बारंबारताएँ और
अतः, 60 - 70 माध्यक वर्ग है।
माध्यक वर्ग ज्ञात करने के बाद, हम निम्नलिखित सूत्र का प्रयोग करके माध्यक ज्ञात करते हैं :
जहाँ
अब
को सूत्र में प्रतिस्थापित करने पर, हमें प्राप्त होता है :
अतः, लगभग आधे विद्यार्थियों ने 66.4 से कम अंक प्राप्त किए हैं और शेष आधे विद्यार्थियों ने 66.4 से अधिक या उसके बराबर अंक प्राप्त किए हैं।
अब जब हमने तीनों केंद्रीय प्रवृत्ति के मापकों का अध्ययन कर लिया है, तो आइए इस बात की चर्चा करें कि एक विशिष्ट आवश्यकता के लिए, कौन-सा मापक अधिक उपयुक्त रहेगा।
केंद्रीय प्रवृत्ति का अधिकतर प्रयोग होने वाला मापक माध्य है, क्योंकि यह सभी प्रेक्षणों पर आधारित होता है तथा दोनों चरम मानों के बीच में स्थित होता है। अर्थात्, यह संपूर्ण आँकड़ों में सबसे बड़े और सबसे छोटे प्रेक्षणों के बीच में स्थित होता है। यह हमें दो या अधिक दिए हुए बंटनों की तुलना करने में भी सहायक है। उदाहरणार्थ, किसी परीक्षा में, विभिन्न स्कूलों के विद्यार्थियों द्वारा प्राप्त किए गए अंकों के औसत (माध्य) की तुलना करके हम यह निष्कर्ष निकाल सकते हैं कि किस स्कूल का प्रदर्शन बेहतर रहा।
परंतु आँकड़ों के चरम मान माध्य पर प्रभाव डालते हैं। उदाहरणार्थ, लगभग एक-सी बारंबारताओं वाले वर्गों का माध्य दिए हुए आँकड़ों का एक अच्छा प्रतिनिधि होगा। परंतु यदि एक वर्ग की बारंबारता मान लीजिए 2 हो और शेष पाँच वर्गों की बारंबारताएँ
उन समस्याओं में, जहाँ व्यक्तिगत प्रेक्षण महत्वपूर्ण नहीं होते और हम एक ‘प्रतीकात्मक’ (typical) प्रेक्षण ज्ञात करना चाहते हैं, तो माध्यक अधिक उपयुक्त रहता है। उदाहरणार्थ, किसी राष्ट्र के श्रमिकों की प्रतीकात्मक उत्पादकता दर, औसत मज़दूरी, इत्यादि के लिए माध्यक एक उपयुक्त मापक रहता है। ये ऐसी स्थितियाँ हैं जिनमें चरम (अर्थात् बहुत बड़े या बहुत छोटे) मान संबद्ध हो सकते हैं। अतः, इन स्थितियों में, हम माध्य के स्थान पर, केंद्रीय प्रवृत्ति का मापक माध्यक लेते हैं।
ऐसी स्थितियों में, जहाँ अधिकतर आने वाला मान स्थापित करना हो या सबसे अधिक लोकप्रिय वस्तु का पता करना हो, तो बहुलक सबसे अधिक अच्छा विकल्प होता है। उदाहरणार्थ, सबसे अधिक देखे जाने वाला लोकप्रिय टीवी प्रोग्राम ज्ञात करने, उस उपभोक्ता वस्तु को ज्ञात करने, जिसकी माँग सबसे अधिक है, लोगों द्वारा वाहनों का सबसे अधिक पसंद किए जाने वाला रंग ज्ञात करने, इत्यादि में बहुलक उपयुक्त मापक है। टिप्पणियाँ :
1. इन तीनों केंद्रीय प्रवृत्ति के मापकों में एक आनुभाविक संबंध है, जो निम्नलिखित है:
2. असमान वर्गमापों वाले वर्गीकृत आँकड़ों के माध्यक भी परिकलित किए जा सकते हैं। परंतु यहाँ हम इनकी चर्चा नहीं करेंगे।
13.5 सारांश
इस अध्याय में, आपने निम्नलिखित बिंदुओं का अध्ययन किया है :
1. वर्गीकृत आँकड़ों का माध्य निम्नलिखित प्रकार ज्ञात किया जा सकता है :
(i) प्रत्यक्ष विधि:
(ii) कल्पित माध्य विधि
(iii) पग-विचलन विधि:
इनमें यह मान लिया जाता है कि प्रत्येक वर्ग की बारंबारता उसके मध्य-बिंदु, अर्थात् वर्ग चिह्न पर केंद्रित है।
2. वर्गीकृत आँकड़ों का बहुलक निम्नलिखित सूत्र द्वारा ज्ञात किया जाता है :
जहाँ संकेत अपना स्वाभाविक अर्थ रखते हैं।
3. किसी बारंबारता बंटन में किसी वर्ग की संचयी बारंबारता उस वर्ग से पहले वाले सभी वर्गों की बारंबारताओं का योग होता है।
4. वर्गीकृत आँकड़ों का माध्यक निम्नलिखित सूत्र द्वारा ज्ञात किया जाता है :
जहाँ संकेत अपना स्वाभाविक अर्थ रखते हैं।
पाठकों के लिए विशेष
वर्गीकृत आँकड़ों के बहुलक और माध्यक का परिकलन करने के लिए, सूत्र का प्रयोग करने से पहले यह सुनिश्चित किया जाना चाहिए कि वर्ग अंतराल सतत हैं। इसी प्रकार का प्रतिबंध का प्रयोग तोरण की संरचना के लिए भी करते हैं। अग्रतः, तोरण की स्थिति में प्रयुक्त पैमाना दोनों अक्षों पर समान नहीं भी हो सकता है।