समांतर श्रेढ़ियाँ
5.1 भूमिका
आपने इस पर अवश्य ध्यान दिया होगा कि प्रकृति में, अनेक वस्तुएँ एक निश्चित प्रतिरूप (pattern) का अनुसरण करती हैं, जैसे कि सूरजमुखी के फूल की पंखुड़ियाँ, मधु-कोष (या मधु-छत्ते) में छिद्र, एक भुट्टे पर दाने, एक अनन्नास और एक पाइन कोन (pine cone) पर सर्पिल, इत्यादि
अब हम अपने दैनिक जीवन में आने वाले प्रतिरूपों की ओर देखते हैं। ऐसे कुछ उदाहरण हैं :
(i) रीना ने एक पद के लिए आवेदन किया और उसका चयन हो गया। उसे यह पद ₹ 8000 के मासिक वेतन और ₹ 500 वार्षिक की वेतन वृद्धि के साथ दिया गया। उसका वेतन (₹ में) पहले वर्ष, दूसरे वर्ष, तीसरे वर्ष, इत्यादि के लिए क्रमशः
(ii) एक सीढ़ी के डंडों की लंबाइयाँ नीचे से ऊपर की ओर एक समान रूप से
आकृति 5.1
(iii) किसी बचत योजना में, कोई धनराशि प्रत्येक 3 वर्षों के बाद स्वयं की
है। ₹ 8000 के निवेश की
(iv) भुजाओं
आकृति 5.2
(v) शकीला अपनी पुत्री की गुल्लक में ₹ 100 तब डालती है, जब वह एक वर्ष की हो जाती है तथा प्रत्येक वर्ष इसमें ₹ 50 की वृद्धि करती जाती है। उसके पहले, दूसरे, तीसरे, चौथे, … जन्म दिवसों पर उसकी गुल्लक में डाली गई राशियाँ (रुपयों में) क्रमशः
100, 150, 200,
(vi) खरगोशों का एक युग्म अपने पहले महीने में प्रजनन करने के योग्य नहीं है। दूसरे और प्रत्येक आने वाले महीने में वे एक नए युग्म का प्रजनन करते हैं। प्रत्येक नया युग्म अपने दूसरे महीने और प्रत्येक आने वाले महीने में एक नए युग्म का प्रजनन करता है (देखिए आकृति 5.3)। यह मानते हुए कि किसी खरगोश की मृत्यु नहीं होती है, पहले, दूसरे, तीसरे, . . ., छठे महीने के प्रारंभ में खरगोशों के युग्मों की संख्या क्रमशः
उपरोक्त उदाहरणों में, हम कुछ प्रतिरूप देखते हैं। कुछ में, हम देखते हैं कि उत्तरोत्तर पद अपने से पहले पद में एक स्थिर संख्या जोड़ने से प्राप्त होते हैं; कुछ में ये पद अपने से पहले पद को एक निश्चित संख्या से गुणा करके प्राप्त होते हैं तथा कुछ अन्य में हम यह देखते हैं कि ये क्रमागत संख्याओं के वर्ग हैं, इत्यादि।
इस अध्याय में, हम इनमें से एक प्रतिरूप का अध्ययन करेंगे जिसमें उत्तरोत्तर पद अपने से पहले पदों में एक निश्चित संख्या जोड़ने पर प्राप्त किए जाते हैं। हम यह भी देखेंगे कि इनके
5.2 समांतर श्रेढ़ियाँ
संख्याओं की निम्नलिखित सूचियों (lists) पर विचार कीजिए:
(i)
(ii)
(iii)
(iv)
(v)
सूची की प्रत्येक संख्या एक पद (term) कहलाता है।
उपरोक्त सूचियों में से प्रत्येक सूची में, यदि आपको एक पद दिया हो, तो क्या आप उसका अगला पद लिख सकते हैं? यदि हाँ, तो आप ऐसा कैसे करेंगे? शायद, किसी प्रतिरूप या नियम का अनुसरण करते हुए, आप ऐसा करेंगे। आइए, उपरोक्त सूचियों को देखें और इनमें संबद्ध नियम को लिखें।
(i) में प्रत्येक पद अपने पिछले पद से 1 अधिक है।
(ii) में प्रत्येक पद अपने पिछले पद से 30 कम है।
(iii) में प्रत्येक पद अपने पिछले पद में 1 जोड़ने से प्राप्त होता है।
(iv) में सभी पद 3 हैं, अर्थात् प्रत्येक पद अपने पिछले पद में शून्य जोड़कर (या उसमें से शून्य घटा कर प्राप्त होता है।)
(v) में प्रत्येक पद अपने पिछले पद में -0.5 जोड़कर (अर्थात् उसमें से 0.5 घटाकर) प्राप्त होता है।
उपरोक्त सूचियों में से प्रत्येक में हम देखते हैं कि उत्तरोत्तर पदों को इनसे पहले पदों
में एक निश्चित संख्या जोड़कर प्राप्त किया जाता है। संख्याओं की ऐसी सूची को यह कहा जाता है कि वे एक समांतर श्रेढ़ी (Arithmetic Progression या A.P.) बना रहे हैं।
अतः, एक समांतर श्रेढ़ी संख्याओं की एक ऐसी सूची है जिसमें प्रत्येक पद ( पहले पद के अतिरिक्त) अपने पद में एक निश्चित संख्या जोड़ने पर प्राप्त होता है।
यह निश्चित संख्या A.P. का सार्व अंतर (common difference) कहलाती है। याद रखिए, यह सार्व अंतर धनात्मक, ऋणात्मक या शून्य हो सकता है।
आइए एक A.P. के पहले पद को
अत:
A.P. के कुछ अन्य उदाहरण निम्नलिखित हैं :
(a) किसी स्कूल की प्रातःकालीन सभा में एक पंक्ति में खड़े हुए कुछ विद्यार्थियों की ऊँचाइयाँ (
(b) किसी शहर में, जनवरी मास में किसी सप्ताह में लिए गए न्यूनतम तापमान (डिग्री सेल्सियस में) आरोही क्रम में लिखने पर
(c) ₹ 1000 के एक ऋण में से प्रत्येक मास
(d) किसी स्कूल द्वारा कक्षाओं I से XII तक के सर्वाधिक अंक पाने वाले विद्यार्थियों को दिए जाने वाले नकद पुरस्कार (₹ में) क्रमशः
(e) जब प्रति मास ₹ 50 की बचत की जाती है, तो 10 मास के लिए, प्रत्येक मास के अंत में कुल बचत की राशियाँ (₹ में)
यह आपके अभ्यास के लिए छोड़ा जा रहा है कि आप स्पष्ट करें कि उपरोक्त में प्रत्येक सूची एक A.P. क्यों है।
आप यह देख सकते हैं कि
एक समांतर श्रेढ़ी को निरूपित करती है, जहाँ
ध्यान दीजिए कि उपरोक्त उदाहरणों (a) से (e) में, पदों की संख्या परिमित (finite) है। ऐसी A.P. को एक परिमित A.P. कहते हैं। आप यह भी देख सकते हैं कि इनमें से प्रत्येक A.P. का एक अंतिम पद (last term) है। इसी अनुच्छेद के उदाहरणों (i) से (v) में दी हुई A.P. परिमित A.P. नहीं हैं। ये अपरिमित A.P. (Infinite Arithmetic Progressions) कहलाती है। ऐसी A.P. में अंतिम पद नहीं होते।
अब एक A.P. के बारे में जानने के लिए आपको न्यूनतम किस सूचना की आवश्यकता होती है? क्या इसके प्रथम पद की जानकारी पर्याप्त है? या क्या इसके केवल सार्व अंतर की जानकारी पर्याप्त है? आप पाएँगे कि आपको इन दोनों अर्थात् प्रथम पद
उदाहरणार्थ, यदि प्रथम पद
तथा यदि
इसी प्रकार, जब
अतः यदि आपको
के लिए हमें प्राप्त है:
यहाँ, प्रत्येक स्थिति में, किन्हीं दो क्रमागत पदों का अंतर 3 है। अतः, संख्याओं की उपरोक्त दी हुई चर्चा सूची एक A.P. है, जिसका प्रथम पद
संख्याओं की सूची :
अतः यह भी एक A.P. है जिसका प्रथम पद 6 है और सार्व अंतर -3 है। व्यापक रूप में, A.P.
जहाँ
एक दी हुई A.P. का
संख्याओं की सूची
ध्यान दीजिए कि A.P. :
आइए कुछ उदाहरणों की सहायता से इन अवधारणाओं को और अधिक स्पष्ट करें।
5.3 A.P. का वाँ पद
आइए अनुच्छेद 5.1 में दी हुई उस स्थिति पर पुनः विचार करें जिसमें रीना ने एक पद के लिए आवेदन किया था और वह चुन ली गई थी। उसे यह पद ₹ 8000 के मासिक वेतन और ₹ 500 वार्षिक की वेतन वृद्धि के साथ दिया गया था। पाँचवें वर्ष में उसका मासिक वेतन क्या होगा?
इसका उत्तर देने के लिए, आइए देखें कि उसका मासिक वेतन दूसरे वर्ष में क्या होगा।
यह
चौथे वर्ष का वेतन
पाँचवें वर्ष का वेतन
ध्यान दीजिए कि यहाँ हमें संख्याओं की निम्नलिखित सूची मिल रही है :
ये संख्याएँ एक A.P. बना रही हैं। (क्यों?)
अब ऊपर बनने वाले प्रतिरूप को देखकर क्या आप उसका छठे वर्ष का मासिक वेतन ज्ञात कर सकते हैं? क्या 15 वें वर्ष का मासिक वेतन ज्ञात कर सकते हैं? साथ ही, यह मानते हुए कि वह इस पद पर आगे भी कार्य करती रहेगी, 25 वें वर्ष के लिए उसके मासिक वेतन के विषय में आप क्या कह सकते हैं? इसका उत्तर देने के लिए, आप पिछले वर्ष के वेतन में ₹ 500 जोड़कर वांछित वेतन परिकलित करेंगे। क्या आप इस प्रक्रिया को कुछ संक्षिप्त कर सकते हैं? आइए, देखें। जिस प्रकार हमने इन वेतनों को ऊपर प्राप्त किया है, उनसे आपको कुछ आभास तो लग गया होगा।
15 वें वर्ष के लिए वेतन
अर्थात्
इसी प्रकार 25 वें साल में उसका वेतन होगा :
इस उदाहरण से, आपको कुछ आभास तो अवश्य हो गया होगा कि एक A.P. के 15 वें पद, 25 वें पद और व्यापक रूप में,
मान लीजिए
दूसरा पद
इस प्रतिरूप को देखते हुए, हम कह सकते हैं कि
आइए अब कुछ उदाहरणों पर विचार करें।
5.4 A.P. के प्रथम पदों का योग
आइए अनुच्छेद 5.1 में दी हुई स्थिति पर पुन: विचार करें, जिसमें शकीला अपनी पुत्री की गुल्लक में, उसके 1 वर्ष की हो जाने पर ₹ 100 डालती है, उसके दूसरे जन्म दिवस पर ₹ 150 , तीसरे जन्म दिवस पर ₹ 200 डालती है और ऐसा आगे जारी रखती है। जब उसकी पुत्री 21 वर्ष की हो जाएगी, तो उसकी गुल्लक में कितनी धनराशि
एकत्रित हो जाएगी?
यहाँ, उसके प्रथम, दूसरे, तीसरे, चौथे, … जन्म दिवसों पर, उसकी गुल्लक में डाली गई राशियाँ (₹ में) क्रमशः
हम गॉस (जिसके बारे में आप अध्याय 1 में पढ़ चुके हैं) को दी गई समस्या पर विचार करते हैं, जो उसे हल करने के लिए उस समय दी गई थी, जब वह केवल 10 वर्ष का था। उससे 1 से 100 तक के धन पूर्णांकों का योग ज्ञात करने को कहा गया। उसने तुरंत उत्तर दिया कि योग 5050 है। क्या आप अनुमान लगा सकते हैं कि उसने ऐसा कैसे किया था? उसने इस प्रकार लिखा:
फिर, उसने उल्टे क्रम संख्याओं को इस प्रकार लिखा:
उपरोक्त को जोड़ने पर उसने प्राप्त किया:
अत:
अब, हम इसी तकनीक का उपयोग करते हुए, एक A.P. के प्रथम
इस A.P. का
पदों को विपरीत क्रम में लिखने पर हमें प्राप्त होता है:
अब, (1) और (2) को पदों के अनुसार जोड़ने पर, हमें प्राप्त होता है :
या
या
अतः किसी A.P. के प्रथम
हम इसे इस रूप में भी लिख सकते हैं
अर्थात्
अब, यदि किसी A.P. में केवल
परिणाम का यह रूप उस स्थिति में उपयोगी है, जब A.P. के प्रथम और अंतिम पद दिए हों तथा सार्व अंतर नहीं दिया गया हो।
अब हम उसी प्रश्न पर वापस आ जाते हैं, जो प्रारंभ में हमसे पूछा गया था। शकीला की पुत्री की गुल्लक में उसके पहले, दूसरे, तीसरे,…, जन्म दिवसों पर डाली गई धनराशियाँ (₹ में) क्रमशः
यह एक A.P. है। हमें उसके 21 वें जन्मदिवस तक एकत्रित हुई कुल धनराशि ज्ञात करनी है, अर्थात् हमें इस A.P. के प्रथम 21 पदों का योग ज्ञात करना है।
यहाँ
अतः उसके 21 वें जन्म दिवस तक एकत्रित हुई गुल्लक में धनराशि ₹ 12600 है।
क्या सूत्र के प्रयोग से प्रश्न हल करना सरल नहीं हो गया है?
किसी A.P. के
टिप्पणी : किसी A.P. का
आइए कुछ उदाहरणों पर विचार करें।
टिप्पणी :
1. इस स्थिति में, प्रथम 4 पदों का योग
2. ये दोनों उत्तर संभव हैं, क्योंकि 5 वें से 13 वें पदों तक का योग शून्य हो जाएगा। यह इसलिए है कि यहाँ
5.5 सारांश
इस अध्याय में, आपने निम्नलिखित तथ्यों का अध्ययन किया है :
1. एक समांतर श्रेढ़ी संख्याओं की ऐसी सूची होती है, जिसमें प्रत्येक पद ( प्रथम पद के अतिरिक्त) अपने से ठीक पहले पद में एक निश्चित संख्या
एक A.P. का व्यापक रूप
2. संख्याओं की एक दी हुई सूची A.P. होती है, यदि अंतरों
3. प्रथम पद
4. किसी A.P. के प्रथम
5. यदि एक परिमित A.P. का अंतिम पद (मान लीजिए
पाठकों के लिए विशेष
यदि