हीरोन का सूत्र
10.1 त्रिभुज का क्षेत्रफल - हीरोन के सूत्र द्वारा
हीरोन का जन्म संभवतः मिम्र में अलेक्जेंड्रिया नामक स्थान पर हुआ। उन्होंने अनुप्रायोगिक गणित (applied mathematics) पर कार्य किया। उनका गणितीय और भौतिकीय विषयों पर कार्य इतना अधिक और विभिन्न प्रकार का था कि उन्हें इन क्षेत्रों का एक विश्वकोण संबंधी (encyclopedic) लेखक समझा जाता था। उनका ज्यामितीय कार्य मुख्यतः मेन्सुरेशन ( क्षेत्रमिति) की समस्याओं से संबंधित था। यह कार्य तीन पुस्तकों में लिखा गया है। पुस्तक 1 में, वर्गों, आयतों, त्रिभुजों, समलंबों, अनेक प्रकार के विशिष्ट चतुर्भुजों, सम बहुभुजों, वृत्तों के क्षेत्रफलों, बेलनों, शंकुओं, गोलों, इत्यादि के पृष्ठीय क्षेत्रफलों का वर्णन
हीरोन है। इसी पुस्तक में, हीरोन ने त्रिभुज की तीनों भुजाओं के पदों में उसके (10 सा०यू०पू०-75 सा०्यू०ू०) क्षेत्रफल का प्रसिद्ध (या सुपरिचित) सूत्र प्रतिपादित किया है।
आकृति 10.1
हीरोन के इस सूत्र को हीरो का सूत्र (Hero’s formula) भी कहा जाता है। इसे नीचे दिया जा रहा है:
जहाँ
यह सूत्र उस स्थिति में सहायक होता है, जब त्रिभुज की ऊँचाई सरलता से ज्ञात न हो सकती हो। आइए ऊपर बताए गए त्रिभुजाकार पार्क
आइए
प्राप्त होगा।
अब,
और
आकृति 10.2
हैं।
अतः, पार्क
हम यह भी देखते हैं कि
इसलिए, सूत्र I से हम जाँच कर सकते हैं कि पार्क का क्षेत्रफल
हम पाते हैं कि यह क्षेत्रफल वही है जो हमें हीरोन के सूत्र से प्राप्त हुआ था।
अब आप पहले चर्चित किए गए अन्य त्रिभुजों के क्षेत्रफलों को हीरोन के सूत्र से ज्ञात करके जाँच कीजिए कि क्षेत्रफल पहले जैसे ही प्राप्त होते हैं। ये त्रिभुज हैं :
(i)
और (ii) असमान भुजा
इसलिए, त्रिभुज का क्षेत्रफल
(ii) के लिए,
इसलिए, त्रिभुज का क्षेत्रफल
आइए अब कुछ उदाहरण लें।
10.2 सारांश
इस अध्याय में, आपने निम्नलिखित बिंदु का अध्ययन किया है :
1. यदि त्रिभुज की भुजाएँ