चतुर्भुज
8.1 समांतर चतुर्भुज के गुण
आप कक्षा आठ में चतुर्भुजों और उनके प्रकारों का अध्ययन कर चुके हैं। एक चतुर्भुज चार भुजाएँ, चार कोण और चार शीर्ष हैं। एक समांतर चतुर्भुज एक चतुर्भुज है जिसमें सम्मुख भुजाओं के दोनों युग्म समांतर हैं आइए एक क्रियाकलाप करें।
कागज पर एक समांतर चतुर्भुज खींच कर उसे काट लीजिए। अब इसे विकर्ण के अनुदिश काट लीजिए (देखिए आकृति 8.1)। आप दो त्रिभुज प्राप्त करते हैं। इन त्रिभुजों के बारे में आप क्या कह सकते हैं?
एक त्रिभुज को दूसरे त्रिभुज पर रखिए। यदि आवश्यक हो, तो त्रिभुज को घुमाइए भी। आप क्या देखते हैं?
देखिए कि दोनों त्रिभुज परस्पर सर्वांगसम हैं।
आकृति 8.1
कुछ और समांतर चतुर्भुज खींच कर इस क्रियाकलाप को दोहराइए। प्रत्येक बार आप पाएँगे कि समांतर चतुर्भुज का एक विकर्ण उसे दो सर्वांगसम त्रिभुजों में विभाजित करता है। अब आइए इस परिणाम को सिद्ध करें।
प्रमेय 8.1 : किसी समांतर चतुर्भुज का एक विकर्ण उसे दो सर्वांगसम त्रिभुजों में विभाजित करता है।
उपपत्ति : मान लीजिए
इसलिए,
साथ ही,
इसलिए,
और
(उभयनिष्ठ)
अतः,
(ASA नियम)
आकृति 8.2
अर्थात् विकर्ण
अब समांतर चतुर्भुज
आप पाएँगे कि
यह समांतर चतुर्भुज का एक अन्य गुण है, जिसे नीचे दिया जा रहा है :
प्रमेय 8.2 : एक समांतर चतुर्भुज में सम्मुख भुजाएँ बराबर होती हैं।
आप पहले ही सिद्ध कर चुके हैं कि समांतर चतुर्भुज का विकर्ण उसे दो सर्वांगसम त्रिभुजों में विभाजित करता है। अतः, आप इनके संगत भागों, मान लीजिए भुजाओं, के बारे में क्या कह सकते हैं? ये बराबर हैं।
इसलिए,
अब इस परिणाम का विलोम क्या है? आप जानते हैं कि जो प्रमेय (किसी कथन) में दिया हो, तो उसके विलोम में उसे सिद्ध करना होता है और जो प्रमेय में दिया गया है उसे विलोम में दिया हुआ माना जाता है। ध्यान दीजिए कि प्रमेय 8.2 को निम्न रूप में भी लिखा जा सकता है :
यदि एक चतुर्भुज एक समांतर चतुर्भुज है, तो उसकी सम्मुख भुजाओं का प्रत्येक युग्म बराबर होता है। इसलिए, इसका विलोम निम्न होगा :
प्रमेय 8.3 : यदि एक चतुर्भुज की सम्मुख भुजाओं का प्रत्येक युग्म बराबर हो, तो वह एक समांतर चतुर्भुज होता है।
क्या आप इसके कारण दे सकते हैं?
मान लीजिए चतुर्भुज
स्पष्टतः,
( क्यों?)
अतः,
और
आकृति 8.3
क्या अब आप कह सकते हैं कि
आपने अभी देखा है कि एक समांतर चतुर्भुज में सम्मुख भुजाओं का प्रत्येक युग्म बराबर होता है और विलोमतः यदि किसी चतुर्भुज में सम्मुख भुजाओं का प्रत्येक युग्म बराबर हो, तो वह एक समांतर चतुर्भुज होता है। क्या हम यही परिणाम सम्मुख कोणों के युग्मों के बारे में भी निकाल सकते हैं?
एक समांतर चतुर्भुज खींचिए और उसके कोणों को मापिए। आप क्या देखते हैं?
सम्मुख कोणों का प्रत्येक युग्म बराबर है।
इसे कुछ और समांतर चतुर्भुज लेकर दोहराइए। इससे हम एक अन्य परिणाम पर पहुँचते हैं, जो निम्न है :
प्रमेय 8.4 : एक समांतर चतुर्भुज में सम्मुख कोण बराबर होते हैं।
अब, क्या इस परिणाम का विलोम भी सत्य है? हाँ, ऐसा ही है। चतुर्भुज के कोण योग गुण और तिर्यक रेखा द्वारा प्रतिच्छेदित समांतर रेखाओं के गुणों का प्रयोग करके, हम देख सकते हैं कि उपरोक्त का विलोम भी सत्य है। इस प्रकार, हमें निम्न प्रमेय प्राप्त होती है:
प्रमेय 8.5 : यदि एक चतुर्भुज में सम्मुख कोणों का प्रत्येक युग्म बराबर हो, तो वह एक समांतर चतुर्भुज होता है।
समांतर चतुर्भुज का एक गुण और भी है। आइए इसका अध्ययन करें। एक समांतर चतुर्भुज
प्रतिच्छेद करते हैं (देखिए आकृति 8.4)।
आप क्या देखते हैं? आप देखेंगे कि
है। अर्थात्
आकृति 8.4
कुछ और समांतर चतुर्भुज लेकर इस क्रियाकलाप को दोहराइए।
प्रत्येक बार, आप प्राप्त करेंगे कि
इस प्रकार, हम निम्न प्रमेय प्राप्त करते हैं :
प्रमेय 8.6 : समांतर चतुर्भुज के विकर्ण एक दूसरे को (परस्पर) समद्विभाजित करते हैं।
अब, यदि एक चतुर्भुज के विकर्ण एक दूसरे को समद्विभाजित करें, तो क्या होगा? क्या यह एक समांतर चतुर्भुज होगा? वास्तव में, यह सत्य है।
यह प्रमेय 8.6 के परिणाम का विलोम है। इसे नीचे दिया जा रहा है :
प्रमेय 8.7 : यदि एक चतुर्भुज के विकर्ण एक दूसरे को समद्विभाजित करें, तो वह एक समांतर चतुर्भुज होता है।
आप इस परिणाम के लिए तर्क निम्न प्रकार दे सकते हैं :
ध्यान दीजिए कि आकृति 8.5 में, यह दिया है कि
अत:,
इसलिए,
इससे हमें
इसी प्रकार,
अतः,
आइए अब कुछ उदाहरण लें।
आकृति 8.5
8.2 मध्य-बिंदु प्रमेय
आप एक त्रिभुज और एक चतुर्भुज के अनेक गुणों का अध्ययन कर चुके हैं। आइए त्रिभुज के एक अन्य गुण का अध्ययन करें, जो एक त्रिभुज की भुजाओं के मध्य-बिंदुओं से संबंधित है। इसके लिए, निम्नलिखित क्रियाकलाप कीजिए :
एक त्रिभुज
आप पाएँगे कि
है। अतः,
कुछ अन्य त्रिभुज लेकर, इस क्रियाकलाप को दोहराइए।
आकृति 8.15
इस प्रकार, आप सरलता से निम्न प्रमेय पर पहुँच सकते हैं:
प्रमेय 8.8 : किसी त्रिभुज की किन्ही दो भुजाओं के मध्य-बिंदुओं को मिलाने वाला रेखाखंड तीसरी भुजा के समांतर होता है।
आप इस प्रमेय को निम्नलिखित संकेत की सहायता से सिद्ध कर सकते हैं।
आकृति 8.16 को देखिए, जिसमें
इसलिए,
आकृति 8.16
ध्यान दीजिए कि
क्या आप प्रमेय 8.8 का विलोम लिख सकते हैं? क्या यह विलोम सत्य है?
आप देखेंगे कि ऊपर दिए गए प्रमेय का विलोम भी सत्य है। इसे नीचे दिया जा रहा है :
प्रमेय 8.9 : किसी त्रिभुज की एक भुजा के मध्य-बिंदु से दूसरी भुजा के समांतर खींची गई रेखा तीसरी भुजा को समद्विभाजित करती है।
आकृति 8.17 में देखिए कि भुजा
आकृति 8.17
8.3 सारांश
इस अध्याय में, आपने निम्नलिखित बिंदुओं का अध्ययन किया है :
1. समांतर चतुर्भुज का एक विकर्ण उसे दो सर्वांगसम त्रिभुजों में विभाजित करता है।
2. एक समांतर चतुर्भुज में,
(i) सम्मुख भुजाएँ बराबर होती हैं।
(ii) सम्मुख कोण बराबर होते हैं।
(iii) विकर्ण परस्पर समद्विभाजित करते हैं।
3. आयत के विकर्ण परस्पर समद्विभाजित करते हैं और बराबर होते हैं। इसका विलोम भी सत्य है।
4. समचतुर्भुज के विकर्ण परस्पर समकोण पर समद्विभाजित करते हैं। इसका विलोम भी सत्य है।
5. वर्ग के विकर्ण परस्पर समकोण पर समद्विभाजित करते हैं और बराबर होते हैं। इसका विलोम भी सत्य है।
6. किसी त्रिभुज की किन्हीं दो भुजाओं के मध्य-बिंदुओं को मिलाने वाला रेखाखंड तीसरी भुजा के समांतर होता है और उसका आधा होता है।
7. किसी त्रिभुज की एक भुजा के मध्य-बिंदु से दूसरी भुजा के समांतर खींची गई रेखा तीसरी भुजा को समद्विभाजित करती है।