त्रिभुज

7.1 भूमिका

आप पिछली कक्षाओं में, त्रिभुजों और उनके विभिन्न गुणों के बारे में अध्ययन कर चुके हैं। आप जानते हैं कि तीन प्रतिच्छेदी रेखाओं द्वारा बनाई गई एक बंद आकृति (closed figure) एक त्रिभुज (triangle) कहलाती है (‘त्रि’ का अर्थ है ‘तीन’)। एक त्रिभुज की तीन भुजाएँ, तीन कोण और तीन शीर्ष होते हैं। उदाहरणार्थ, आकृति 7.1 में दिए त्रिभुज $\mathrm{ABC}$, जिसे $\Delta$ $\mathrm{ABC}$ से व्यक्त करते हैं, की तीन भुजाएँ $\mathrm{AB}, \mathrm{BC}$ और $\mathrm{CA}$ हैं, $\angle \mathrm{A}, \angle \mathrm{B}$ और $\angle \mathrm{C}$ इसके तीन कोण हैं तथा $\mathrm{A}, \mathrm{B}$ और $\mathrm{C}$ इसके तीन शीर्ष हैं।

अध्याय 6 में, आप त्रिभुजों के कुछ गुणों का भी अध्ययन कर चुके हैं। इस अध्याय में, आप त्रिभुजों की सर्वांगसमता (congruence), सर्वांगसमता के नियमों, त्रिभुजों के कुछ अन्य गुणों और त्रिभुजों में असमिकाओं (inequalities) के बारे में विस्तृत रूप से अध्ययन करेंगे। आप पिछली कक्षाओं के इन गुणों में से अधिकतर गुणों की सत्यता की जाँच क्रियाकलापों द्वारा कर चुके हैं। यहाँ हम इनमें से कुछ गुणों को सिद्ध भी करेंगे।

आकृति 7.1

7.2 त्रिभुजों की सर्वांगसमता

आपने यह अवश्य ही देखा होगा कि आपकी फोटो की एक ही साइज की दो प्रतियाँ सर्वसम (identical) होती हैं। इसी प्रकार, एक ही माप की दो चूड़ियाँ और एक ही बैंक द्वारा जारी किए गए दो एटीएम (ATM) कार्ड सर्वसम होते हैं। आपने देखा होगा कि यदि एक ही वर्ष

में ढले (बने) दो एक रुपए के सिक्कों में से एक को दूसरे पर रखें, तो वे एक दूसरे को पूर्णतया ढक लेते हैं।

क्या आपको याद है कि ऐसी आकृतियों को कैसी आकृतियाँ कहते हैं? निःसंदेह ये सर्वांगसम आकृतियाँ (congruent figures) कहलाती हैं (‘सर्वांगसम’ का अर्थ है ‘सभी प्रकार से बराबर’, अर्थात् वे आकृतियाँ जिनके समान आकार और समान माप हैं)।

अब एक ही त्रिज्या के दो वृत्त खींचिए और एक को दूसरे पर रखिए। आप क्या देखते हैं? ये एक दूसरे को पूर्णतया ढक लेते हैं और हम इन्हें सर्वांगसम वृत्त कहते हैं।

इसी क्रियाकलाप की एक ही माप की भुजाओं वाले दो वर्गों को खींच कर और फिर एक वर्ग को दूसरे वर्ग पर रखकर (देखिए आकृति 7.2) अथवा बराबर भुजाओं वाले दो समबाहु त्रिभुजों को एक दूसरे पर रखकर, पुनरावृत्ति कीजिए। आप देखेंगे कि वर्ग सर्वांगसम हैं और समबाहु त्रिभुज भी आकृति 7.2 सर्वांगसम हैं।

आप सोच सकते हैं कि हम सर्वांगसमता का अध्ययन क्यों कर रहे हैं। आपने अपने रेफ्रीजरेटर में बर्फ की ट्रे (ice tray) अवश्य ही देखी होगी। ध्यान दीजिए कि बर्फ जमाने के लिए बने सभी खाँचे सर्वांगसम हैं। ट्रे में (खाँचों के लिए प्रयोग किए गए साँचों की गहराइयाँ भी सर्वांगसम होती हैं (ये सभी आयताकार या सभी वृत्ताकार या सभी त्रिभुजाकार हो सकते हैं)। अतः, जब भी सर्वसम (एक जैसी) वस्तुएँ बनानी होती हैं, तो साँचे बनाने के लिए सर्वांगसमता की संकल्पना का प्रयोग किया जाता है।

कभी-कभी आपको अपने पेन के रिफिल (refill) बदलने में भी कठिनाई हो सकती है, यदि नया रिफिल आपके पेन के साइज का न हो। स्पष्टतः रिफिल तभी पेन में लग पाएगा, जबकि पुरानी रिफिल और नया रिफिल सर्वांगसम होंगे। इस प्रकार, आप दैनिक जीवन की स्थितियों में ऐसे अनेक उदाहरण ज्ञात कर सकते हैं, जहाँ वस्तुओं की सर्वांगसमता का उपयोग होता है।

क्या आप सर्वांगसम आकृतियों के कुछ और उदाहरण सोच सकते हैं?

अब, निम्न में से कौन-कौन सी आकृतियाँ आकृति 7.3 (i) में दिए वर्ग के सर्वांगसम नहीं हैं?

आकृति 7.3 (ii) और आकृति 7.3 (iii) में दिए बड़े वर्ग स्पष्टतः आकृति 7.3 (i) के वर्ग के सर्वांगसम नहीं हैं। परन्तु आकृति 7.3 (iv) में दिया हुआ वर्ग आकृति 7.3 (i) में दिए वर्ग के सर्वांगसम है।

(i)

(ii)

(iii)

(iv)

आकृति 7.3

आइए अब दो त्रिभुजों की सर्वांगसमता की चर्चा करें।

आप पहले से यह जानते हैं कि दो त्रिभुज सर्वांगसम होते हैं, यदि एक त्रिभुज की भुजाएँ और कोण दूसरे त्रिभुज की संगत भुजाओं और कोणों के बराबर हों।

अब, निम्न में से कौन-कौन से त्रिभुज आकृति 7.4 (i) में दिए त्रिभुज $\mathrm{ABC}$ के सर्वांगसम हैं?

(i)

(ii)

R

E

(iii)

(iv)

आकृति 7.4

आकृति 7.4 (ii) से आकृति 7.4 (v) तक के प्रत्येक त्रिभुज को काट कर उसे पलट कर $\triangle \mathrm{ABC}$ पर रखने का प्रयत्न कीजिए। देखिए कि आकृतियों 7.4 (ii), (iii) और (iv) में दिए त्रिभुज $\triangle \mathrm{ABC}$ के सर्वांगसम हैं, जबकि $7.4(\mathrm{v})$ का $\triangle \mathrm{TSU}, \triangle \mathrm{ABC}$ के सर्वांगसम नहीं है।

यदि $\triangle \mathrm{PQR}, \triangle \mathrm{ABC}$ के सर्वांगसम है, तो हम $\triangle \mathrm{PQR} \cong \triangle \mathrm{ABC}$ लिखते हैं।

ध्यान दीजिए कि जब $\triangle \mathrm{PQR} \cong \triangle \mathrm{ABC}$ हो, तो $\triangle \mathrm{PQR}$ की भुजाएँ $\triangle \mathrm{ABC}$ की संगत बराबर भुजाओं पर पड़ेंगी और ऐसा ही कोणों के लिए भी होगा।

अर्थात् भुजा $\mathrm{PQ}$ भुजा $\mathrm{AB}$ को ढकती है, भुजा $\mathrm{QR}$ भुजा $\mathrm{BC}$ को ढकती है और भुजा $\mathrm{RP}$ भुजा $\mathrm{CA}$ को ढकती है; कोण $\mathrm{P}$ कोण $\mathrm{A}$ को ढकता है, कोण $\mathrm{Q}$ कोण $\mathrm{B}$ को ढकता है और कोण $\mathrm{R}$ कोण $\mathrm{C}$ को ढकता है। साथ ही, दोनों त्रिभुजों के शीर्षों में एक-एक संगतता (oneone correspondence) है। अर्थात् शीर्ष $P$ शीर्ष $A$ के संगत है, शीर्ष $Q$ शीर्ष $B$ के संगत है और शीर्ष $\mathrm{R}$ शीर्ष $\mathrm{C}$ के संगत है। इसे निम्न रूप में लिखा जाता है :

$$ \mathrm{P} \leftrightarrow \mathrm{A}, \mathrm{Q} \leftrightarrow \mathrm{B}, \mathrm{R} \leftrightarrow \mathrm{C} $$

ध्यान दीजिए कि इस संगतता के अंतर्गत, $\triangle \mathrm{PQR} \cong \triangle \mathrm{ABC}$ है। परन्तु इसे $\triangle \mathrm{QRP} \cong$ $\triangle \mathrm{ABC}$ लिखना गलत होगा।

इसी प्रकार, आकृति 7.4 (iii) के लिए,

$$ \mathrm{FD} \leftrightarrow \mathrm{AB}, \mathrm{DE} \leftrightarrow \mathrm{BC} \text { और } \mathrm{EF} \leftrightarrow \mathrm{CA} $$

तथा

$$ \mathrm{F} \leftrightarrow \mathrm{A}, \mathrm{D} \leftrightarrow \mathrm{B} \text { और } \mathrm{E} \leftrightarrow \mathrm{C} \text { है। } $$

इसलिए, $\triangle \mathrm{FDE} \cong \triangle \mathrm{ABC}$ लिखना सही है, परन्तु $\triangle \mathrm{DEF} \cong \triangle \mathrm{ABC}$ लिखना गलत होगा।

आकृति 7.4 (iv) के त्रिभुज और $\triangle \mathrm{ABC}$ के बीच संगतता लिखिए।

अतः, त्रिभुजों की सर्वांगसमता को सांकेतिक रूप में लिखने के लिए, उनके शीर्षों की संगतता को सही प्रकार से लिखना आवश्यक है।

ध्यान दीजिए कि सर्वांगसम त्रिभुजों में संगत भाग बराबर होते हैं और ‘सर्वांगसम त्रिभुजों के संगत भागों के लिए’ हम संक्षेप में ’ $\mathrm{CPCT}$ ’ लिखते हैं।

7.3 त्रिभुजों की सर्वांगसमता के लिए कसौटियाँ

पिछली कक्षाओं में, आप त्रिभुजों की सर्वांगसमता के लिए चार कसौटियाँ (criteria) या नियम (rules) पढ़ चुके हैं। आइए इनका पुनर्विलोकन करें।

एक भुजा $3 \mathrm{~cm}$ लेकर दो त्रिभुज खींचिए (देखिए आकृति 7.5)। क्या ये त्रिभुज सर्वांगसम हैं? ध्यान दीजिए कि ये त्रिभुज सर्वांगसम नहीं हैं।

(i)

(ii)

आकृति 7.5

अब दो त्रिभुज खींचिए जिनमें एक भुजा $4 \mathrm{~cm}$ है और एक कोण $50^{\circ}$ है (देखिए आकृति 7.6)। क्या ये त्रिभुज सर्वांगसम हैं?

आकृति 7.6

देखिए कि ये दोनों त्रिभुज सर्वांगसम नहीं हैं।

इस क्रियाकलाप को त्रिभुजों के कुछ और युग्म खींच कर दोहराइए।

अतः, भुजाओं के एक युग्म की समता अथवा भुजाओं के एक युग्म और कोणों के एक युग्म की समता हमें सर्वांगसम त्रिभुज देने के लिए पर्याप्त नहीं है।

उस स्थिति में क्या होगा जब बराबर कोणों की भुजाओं का अन्य युग्म भी बराबर हो जाए?

आकृति 7.7 में $\mathrm{BC}=\mathrm{QR}, \angle \mathrm{B}=\angle \mathrm{Q}$ और साथ ही $\mathrm{AB}=\mathrm{PQ}$ है। अब आप $\triangle \mathrm{ABC}$ और $\triangle \mathrm{PQR}$ की सर्वांगसमता के बारे में क्या कह सकते हैं?

पिछली कक्षाओं से याद कीजिए कि इस स्थिति में, दोनों त्रिभुज सर्वांगसम होते हैं। आप इसका सत्यापन, $\triangle \mathrm{ABC}$ को काट कर और उसे $\triangle \mathrm{PQR}$ पर रख कर कर सकते हैं। इस क्रियाकलाप को त्रिभुजों के अन्य युग्म लेकर दोहराइए। क्या आप देखते हैं कि दो भुजाओं और अंतर्गत कोण की समता त्रिभुजों की सर्वांगसमता के लिए पर्याप्त है? हाँ, यह पर्याप्त है।

आकृति 7.7

यह त्रिभुजों की सर्वांगसमता की पहली कसौटी (criterion) है।

अभिगृहीत 7.1 (SAS सर्वांगसमता नियम): दो त्रिभुज सर्वांगसम होते हैं, यदि एक त्रिभुज की दो भुजाएँ और उनका अंतर्गत कोण दूसरे त्रिभुज की दो भुजाओं और उनके अंतर्गत कोण के बराबर हों।

इस परिणाम को इससे पहले ज्ञात परिणामों की सहायता से सिद्ध नहीं किया जा सकता है और इसीलिए इसे एक अभिगृहीत के रूप में सत्य मान लिया गया है (देखिए परिशिष्ट 1)।

आइए अब कुछ उदाहरण लें।

आइए अब दो त्रिभुजों की रचना करें जिनकी दो भुजाएँ $4 \mathrm{~cm}$ और $5 \mathrm{~cm}$ हैं और एक कोण $50^{\circ}$ है तथा साथ ही यह कोण बराबर भुजाओं के बीच अंतर्गत कोण नहीं है (देखिए आकृति 7.10)। क्या ये त्रिभुज सर्वांगसम हैं?

आकृति 7.10

ध्यान दीजिए कि ये दोनों त्रिभुज सर्वांगसम नहीं हैं।

त्रिभुजों के कुछ अन्य युग्म लेकर इस क्रियाकलाप को दोहराइए। आप देखेंगे कि दोनों त्रिभुजों की सर्वांगसमता के लिए यह आवश्यक है कि बराबर कोण बराबर भुजाओं के अंतर्गत कोण हो।

अतः, SAS नियम तो सत्य है, परन्तु ASS या SSA नियम सत्य नहीं है।

अब, ऐसे दो त्रिभुजों की रचना करने का प्रयत्न करिए, जिनमें दो कोण $60^{\circ}$ और $45^{\circ}$ हों तथा इन कोणों की अंतर्गत भुजा $4 \mathrm{~cm}$ हो (देखिए आकृति 7.11)।

$4 \mathrm{~cm}$

$4 \mathrm{~cm}$

आकृति 7.11

इन दोनों त्रिभुजों को काटिए और एक त्रिभुज को दूसरे के ऊपर रखिए। आप क्या देखते हैं? देखिए कि एक त्रिभुज दूसरे त्रिभुज को पूर्णतया ढक लेता है, अर्थात् दोनों त्रिभुज सर्वांगसम हैं। कुछ और त्रिभुजों को लेकर इस क्रियाकलाप को दोहराइए। आप देखेंगे कि त्रिभुजों की सर्वांगसमता के लिए, दो कोणों और उनकी अंतर्गत भुजा की समता पर्याप्त है।

यह परिणाम कोण-भुजा-कोण (Angle-Side-Angle) कसौटी है और इसे ASA सर्वांगसमता कसौटी लिखा जाता है। आप पिछली कक्षाओं में, इसकी सत्यता की जाँच कर चुके हैं। आइए इस परिणाम को सिद्ध करें।

चूँकि इस परिणाम को सिद्ध किया जा सकता है, इसलिए इसे एक प्रमेय (theorem) कहा जाता है। इसे सिद्ध करने के लिए, हम SAS सर्वांगसमता नियम का प्रयोग करेंगे। प्रमेय 7.1 (ASA सर्वांगसमता नियम) : दो त्रिभुज सर्वांगसम होते हैं, यदि एक त्रिभुज के दो कोण और उनकी अंतर्गत भुजा दूसरे त्रिभुज के दो कोणों और उनकी अंतर्गत भुजा के बराबर हों।

उपपत्ति : हमें दो त्रिभुज $\mathrm{ABC}$ और $\mathrm{DEF}$ दिए हैं, जिनमें $\angle \mathrm{B}=\angle \mathrm{E}, \angle \mathrm{C}=\angle \mathrm{F}$ और $\mathrm{BC}=\mathrm{EF}$ है। हमें $\triangle \mathrm{ABC} \cong \triangle \mathrm{DEF}$ सिद्ध करना है।

दोनों त्रिभुजों की सर्वांगसमता के लिए देखिए कि यहाँ तीन स्थितियाँ संभव हैं।

स्थिति (i) : मान लीजिए $\mathrm{AB}=\mathrm{DE}$ है(देखिए आकृति 7.12)।

अब आप क्या देखते हैं? आप देख सकते हैं कि

$$ \begin{aligned} \mathrm{AB} & =\mathrm{DE} & \text { (कल्पना की है) } \\ \angle \mathrm{B} & =\angle \mathrm{E} & \text { (दिया है) } \\ \mathrm{BC} & =\mathrm{EF} & \text { (दिया है) } \\ \Delta \mathrm{ABC} & \cong \triangle \mathrm{DEF} & \text{(SAS नियम द्वारा)} \end{aligned} $$

अतः,

आकृति 7.12

स्थिति (ii) : मान लीजिए, यदि संभव है तो, $\mathrm{AB}>\mathrm{DE}$ है। इसलिए, हम $\mathrm{AB}$ पर एक बिंदु $\mathrm{P}$ ऐसा ले सकते हैं कि $\mathrm{PB}=\mathrm{DE}$ हो (देखिए आकृति 7.13)।

आकृति 7.13

अब $\triangle \mathrm{PBC}$ और $\triangle \mathrm{DEF}$ में,

$$ \begin{aligned} & \mathrm{PB}=\mathrm{DE} &\text{(रचना से) }\\ & \angle \mathrm{B}=\angle \mathrm{E} &\text{(दिया है) }\\ & \mathrm{BC}=\mathrm{EF}& \text{(दिया है) } \end{aligned} $$

अतः, हम निष्कर्ष निकाल सकते हैं कि

$$ \Delta \mathrm{PBC} \cong \Delta \mathrm{DEF} \quad \text { (SAS सर्वांगसमता अभिगृहीत द्वारा) } $$

चूँकि दोनों त्रिभुज सर्वांगसम हैं, इसलिए इनके संगत भाग बराबर होने चाहिए।

अतः,

$$ \angle \mathrm{PCB}=\angle \mathrm{DFE} $$

परन्तु हमें दिया है कि

अतः,

$$ \angle \mathrm{ACB}=\angle \mathrm{DFE} $$

परन्तु क्या यह संभव है?

यह तभी संभव है, जब $\mathrm{P}$ बिंदु $\mathrm{A}$ के साथ संपाती हो।

या

$$ \mathrm{BA}=\mathrm{ED} $$

अतः,

$\triangle \mathrm{ABC} \cong \triangle \mathrm{DEF}$

(SAS अभिगृहीत द्वारा)

स्थिति (iii) : यदि $\mathrm{AB}<\mathrm{DE}$ हो, तो हम $\mathrm{DE}$ पर एक बिंदु $\mathrm{M}$ इस प्रकार ले सकते हैं कि $\mathrm{ME}=\mathrm{AB}$ हो। अब स्थिति (ii) वाले तर्कण को दोहराते हुए, हम निष्कर्ष निकाल सकते हैं कि $\mathrm{AB}=\mathrm{DE}$ है और इसीलिए $\triangle \mathrm{ABC} \cong \triangle \mathrm{DEF}$ है।

अब मान लीजिए कि दो त्रिभुजों में दो कोणों के युग्म और संगत भुजाओं का एक युग्म बराबर हैं, परन्तु ये भुजाएँ बराबर कोणों के युग्मों की अंतर्गत भुजाएँ नहीं हैं। क्या ये त्रिभुज अभी भी सर्वांगसम हैं? आप देखेंगे कि ये त्रिभुज सर्वांगसम हैं। क्या आप इसका कारण बता सकते हैं?

आप जानते हैं कि त्रिभुज के तीनों कोणों का योग $180^{\circ}$ होता है। अतः त्रिभुजों के कोणों के दो युग्म बराबर होने पर उनके तीसरे कोण भी बराबर होंगे $\left(180^{\circ}\right.$ - दोनों बराबर कोणों का योग)।

अतः, दो त्रिभुज सर्वांगसम होते हैं, यदि इन त्रिभुजों के दो कोणों के युग्म बराबर हों और संगत भुजाओं का एक युग्म बराबर हो। हम इसे AAS सर्वांगसमता नियम कह सकते हैं।

आइए अब निम्नलिखित क्रियाकलाप करें :

$40^{\circ}, 50^{\circ}$ और $90^{\circ}$ वाले कुछ त्रिभुज खींचिए।

आप ऐसे कितने त्रिभुज खींच सकते हें? वास्तव में, भुजाओं की विभिन्न लंबाइयाँ लेकर हम ऐसे जितने चाहे उतने त्रिभुज खींच सकते हैं (देखिए आकृति 7.14)।

आकृति 7.14

देखिए कि ये त्रिभुज सर्वांगसम हो भी सकते हैं और नहीं भी हो सकते हैं।

अतः, तीन कोणों की समता त्रिभुजों की सर्वांगसमता के लिए पर्याप्त नहीं है। इसलिए, त्रिभुजों की सर्वांगसमता के लिए, तीन बराबर भागों में से एक बराबर भाग भुजा अवश्य होना चाहिए।

आइए अब कुछ और उदाहरण लें।

7.4 एक त्रिभुज के कुछ गुण

पिछले अनुच्छेद में, आपने त्रिभुजों की सर्वांगसमता की दो कसौटियों का अध्ययन किया है। आइए इन परिणामों का एक ऐसे त्रिभुज के कुछ गुणों का अध्ययन करने में प्रयोग करें जिसकी दो भुजाएँ बराबर होती हैं।

नीचे दिया गया क्रियाकलाप कीजिए:

एक त्रिभुज की रचना कीजिए जिसकी दो भुजाएँ बराबर हों। मान लीजिए दो भुजाएँ $3.5 \mathrm{~cm}$ लंबाई की हैं और एक भुजा $5 \mathrm{~cm}$ लंबाई की है (देखिए आकृति 7.24)। आप पिछली कक्षाओं में, ऐसी रचनाएँ कर चुके हैं।

आकृति 7.24

क्या आपको याद है कि इस त्रिभुज को क्या कहते हैं?

एक त्रिभुज जिसकी दो भुजाएँ बराबर हों समद्विबाहु त्रिभुज (isosceles triangle) कहलाता है। अतः, आकृति 7.24 का $\triangle \mathrm{ABC}$ एक समद्विबाहु त्रिभुज है, जिसमें $\mathrm{AB}=\mathrm{AC}$ है।

अब $\angle \mathrm{B}$ और $\angle \mathrm{C}$ को मापिए। आप क्या देखते हैं?

विभिन्न भुजाओं वाले अन्य समद्विबाहु त्रिभुज लेकर इस क्रियाकलाप को दोहराइए। आप देख सकते हैं कि ऐसे प्रत्येक त्रिभुज में बराबर भुजाओं के सम्मुख (सामने के) कोण बराबर हैं।

यह एक अति महत्वपूर्ण परिणाम है और प्रत्येक समद्विबाहु त्रिभुज के लिए सत्य है। इसे नीचे दशाई विधि के अनुसार सिद्ध किया जा सकता है:

प्रमेय 7.2 : एक समद्विबाहु त्रिभुज की बराबर भुजाओं के सम्मुख कोण बराबर होते हैं। इस परिणाम को कई विधियों से सिद्ध किया जा सकता है। इनमें से एक उपपत्ति नीचे दी जा रही है।

उपपत्ति : हमें एक समद्विबाहु $\triangle \mathrm{ABC}$ दिया है, जिसमें $\mathrm{AB}=\mathrm{AC}$ है। हमें $\angle \mathrm{B}=\angle \mathrm{C}$ सिद्ध करना है। आइए $\angle \mathrm{A}$ का समद्विभाजक खींचे। मान लीजिए यह $\mathrm{BC}$ से $\mathrm{D}$ पर मिलता है (देखिए आकृति 7.25)। अब, $\triangle \mathrm{BAD}$ और $\triangle \mathrm{CAD}$ में,

आकृति 7.25

$$ \begin{aligned} \mathrm{AB} & =\mathrm{AC} & \text{(दिया है)}\\ \angle \mathrm{BAD} & =\angle \mathrm{CAD} & \text{(रचना से)}\\ \mathrm{AD} & =\mathrm{AD}& \text{(उभयनिष्ठ)} \\ \triangle \mathrm{BAD} & \cong \triangle \mathrm{CAD} & \text{(SAS नियम द्वारा)}\\ \angle \mathrm{ABD} & =\angle \mathrm{ACD} & \text{(CPCT)}\\ \angle \mathrm{B} & =\angle \mathrm{C} \end{aligned} $$

क्या इसका विलोम भी सत्य है? अर्थात्

यदि किसी त्रिभुज के दो कोण बराबर हों, तो क्या हम निष्कर्ष निकाल सकते हैं कि उनकी सम्मुख भुजाएँ भी बराबर होंगी?

नीचे दिया क्रियाकलाप कीजिए :

एक $\triangle \mathrm{ABC}$ की रचना कीजिए जिसमें $\mathrm{BC}$ किसी भी लंबाई वाली एक भुजा है और $\angle \mathrm{B}=\angle \mathrm{C}=50^{\circ}$ है। $\angle \mathrm{A}$ का समद्विभाजक खींचिए और मान लीजिए कि यह $\mathrm{BC}$ को $\mathrm{D}$ पर प्रतिच्छेद करता है (देखिए आकृति 7.26)।

आकृति 7.26

त्रिभुज $\mathrm{ABC}$ को कागज में से काट लीजिए और इसे $\mathrm{AD}$ के अनुदिश मोड़िए ताकि शीर्ष $\mathrm{C}$ शीर्ष $\mathrm{B}$ पर गिरे ( पड़े)।

$\mathrm{AC}$ और $\mathrm{AB}$ के बारे में आप क्या कह सकते हैं?

देखिए कि $\mathrm{AC}, \mathrm{AB}$ को पूर्णतया ढक लेती है। अतः,

$$ \mathrm{AC}=\mathrm{AB} $$

इसी क्रियाकलाप को ऐसे ही कुछ अन्य त्रिभुज लेकर दोहराइए। प्रत्येक बार आप देखेंगे कि एक त्रिभुज के बराबर कोणों की सम्मुख भुजाएँ बराबर हैं। अतः, हम निम्न प्रमेय प्राप्त करते हैं :

प्रमेय 7.3 : किसी त्रिभुज के बराबर कोणों की सम्मुख भुजाएँ बराबर होती हैं।

यह प्रमेय 7.2 का विलोम है।

आप इस प्रमेय को ASA सर्वांगसमता नियम का प्रयोग करके सिद्ध कर सकते हैं। आइए इन परिणामों को स्पष्ट करने के लिए कुछ उदाहरण लें।

7.5 त्रिभुजों की सर्वांगसमता के लिए कुछ और कसौटियाँ

आप इस अध्याय में, पहले यह देख चुके हैं कि एक त्रिभुज के तीनों कोणों के दूसरे त्रिभुज के तीनों कोणों के बराबर होने पर दोनों त्रिभुजों का सर्वांगसम होना आवश्यक नहीं है। आप सोच सकते हैं कि संभवतः एक त्रिभुज की तीनों भुजाओं के दूसरे त्रिभुज की तीनों भुजाओं के बराबर होने पर त्रिभुज सर्वांगसम हो जाएँ। आप यह पिछली कक्षाओं में पढ़ चुके हैं कि ऐसी स्थिति में त्रिभुज नि:संदेह सर्वांगसम होते हैं।

इस धारणा को निश्चित करने के लिए, $4 \mathrm{~cm}, 3.5 \mathrm{~cm}$ और $4.5 \mathrm{~cm}$ के दो त्रिभुज खींचिए (देखिए आकृति 7.35)। इन्हें काटकर, एक दूसरे पर रखिए। आप क्या देखते हैं? यदि बराबर भुजाओं को एक दूसरे पर रखा जाए। ये एक दूसरे को पूर्णतया ढक लेते हैं अतः, दोनों त्रिभुज सर्वांगसम हैं।

आकृति 7.35

इस क्रियाकलाप को कुछ अन्य त्रिभुज खींचकर दोहराइए। इस प्रकार, हम सर्वांगसमता के एक और नियम पर पहुँच जाते हैं:

प्रमेय 7.4 (SSS सर्वांगसमता नियम) : यदि एक त्रिभुज की तीनों भुजाएँ एक अन्य त्रिभुज की तीनों भुजाओं के बराबर हों, तो दोनों त्रिभुज सर्वांगसम होते हैं।

एक उपयुक्त रचना करके, इस प्रमेय को सिद्ध किया जा सकता है।

आप SAS सर्वांगसमता नियम में पहले ही देख चुके हैं कि बराबर कोणों के युग्म संगत बराबर भुजाओं के युग्मों के बीच में (अंतर्गत) होने चाहिए और यदि ऐसा नहीं हो, तो दोनों त्रिभुज सर्वांगसम नहीं भी हो सकते हैं।

इस क्रियाकलाप को कीजिए :

दो समकोण त्रिभुज ऐसे खींचिए जिनमें प्रत्येक का कर्ण 5 सेमी और एक भुजा $4 \mathrm{~cm}$ की हो (देखिए आकृति 7.36)।

$4 \mathrm{~cm}$

$4 \mathrm{~cm}$

आकृति 7.36

इन्हें काटिए और एक दूसरे पर इस प्रकार रखिए कि इनकी बराबर भुजाएँ एक दूसरे पर आएँ। यदि आवश्यक हो, तो त्रिभुजों को घुमाइए। आप क्या देखते हैं?

आप देखते हैं कि दोनों त्रिभुज एक दूसरे को पूर्णतया ढक लेते हैं और इसीलिए ये सर्वांगसम हैं। यही क्रियाकलाप समकोण त्रिभुजों के अन्य युग्म लेकर दोहराइए। आप क्या देखते हैं?

आप पाएँगे कि दोनों समकोण त्रिभुज सर्वांगसम होंगे, यदि उनके कर्ण बराबर हों और भुजाओं का एक युग्म बराबर हो। आप इस तथ्य की जाँच पिछली कक्षाओं में कर चुके हैं। ध्यान दीजिए कि इस स्थिति में समकोण अंतर्गत कोण नहीं है।

इस प्रकार, आप निम्नलिखित सर्वांगसमता नियम पर पहुँच गए हैं:

प्रमेय 7.5 (RHS सर्वांगसमता नियम ) : यदि दो समकोण त्रिभुजों में, एक त्रिभुज का कर्ण और एक भुजा क्रमशः दूसरे त्रिभुज के कर्ण और एक भुजा के बराबर हों, तो दोनों त्रिभुज सर्वांगसम होते हैं।

ध्यान दीजिए कि यहाँ RHS समकोण (Right angle) - कर्ण (Hypotenuse) - भुजा (Side) को दर्शाता है।

आइए अब कुछ उदाहरण लें।

7.6 सारांश

इस अध्याय में, आपने निम्न बिंदुओं का अध्ययन किया है:

1. दो आकृतियाँ सर्वांगसम होती हैं, यदि उनका एक ही आकार हो और एक ही माप हो।

2. समान त्रिज्याओं वाले दो वृत्त सर्वांगसम होते हैं।

3. समान भुजाओं वाले दो वर्ग सर्वांगसम होते हैं।

4. यदि त्रिभुज $\mathrm{ABC}$ और $\mathrm{PQR}$ संगतता $\mathrm{A} \leftrightarrow \mathrm{P}, \mathrm{B} \leftrightarrow \mathrm{Q}$ और $\mathrm{C} \leftrightarrow \mathrm{R}$, के अंतर्गत सर्वांगसम हों, तो उन्हें सांकेतिक रूप में $\triangle \mathrm{ABC} \cong \triangle \mathrm{PQR}$ लिखते हैं।

5. यदि एक त्रिभुज की दो भुजाएँ और अंतर्गत कोण दूसरे त्रिभुज की दो भुजाओं और अंतर्गत कोण के बराबर हों, तो दोनों त्रिभुज सर्वांगसम होते हैं (SAS सर्वांगसमता नियम)।

6. यदि एक त्रिभुज के दो कोण और अंतर्गत भुजा दूसरे त्रिभुज के दो कोणों और अंतर्गत भुजा के बराबर हों, तो दोनों त्रिभुज सर्वांगसम होते हैं (ASA सर्वांगसमता नियम)।

7. यदि एक त्रिभुज के दो कोण और एक भुजा दूसरे त्रिभुज के दो कोणों और संगत भुजा के बराबर हों, तो दोनों त्रिभुज सर्वांगसम होते हैं (AAS सर्वांगसमता नियम)।

8. त्रिभुज की बराबर भुजाओं के सम्मुख कोण बराबर होते हैं।

9. त्रिभुज के बराबर कोणों की सम्मुख भुजाएँ बराबर होती हैं।

10. किसी समबाहु त्रिभुज का प्रत्येक कोण $60^{\circ}$ का होता है।

11. यदि एक त्रिभुज की तीनों भुजाएँ दूसरे त्रिभुज की तीनों भुजाओं के बराबर हों, तो दोनों त्रिभुज सर्वांगसम होते हैं (SSS सर्वांगसमता नियम)।

12. यदि दो समकोण त्रिभुजों में, एक त्रिभुज का कर्ण और एक भुजा क्रमशः दूसरे त्रिभुज के कर्ण और एक भुजा के बराबर हों, तो दोनों त्रिभुज सर्वांगसम होते हैं (RHS सर्वांगसमता नियम)।



विषयसूची