संख्या पद्धति
1.1 भूमिका
पिछली कक्षाओं में, आप संख्या रेखा के बारे में पढ़ चुके हैं और वहाँ आप यह भी पढ़ चुके हैं कि विभिन्न प्रकार की संख्याओं को संख्या रेखा पर किस प्रकार निरूपित किया जाता है ( देखिए आकृति 1.1)।
आकृति 1.1 : संख्या रेखा
कल्पना कीजिए कि आप शून्य से चलना प्रारंभ करते हैं और इस रेखा पर धनात्मक दिशा में चलते जा रहे हैं। जहाँ तक आप देख सकते हैं; वहाँ तक आपको संख्याएँ, संख्याएँ और संख्याएँ ही दिखाई पड़ती हैं।
आकृति 1.2
अब मान लीजिए आप संख्या रेखा पर चलना प्रारंभ करते हैं और कुछ संख्याओं को एकत्रित करते जा रहे हैं। इस संख्याओं को रखने के लिए एक थैला तैयार रखिए!
संभव है कि आप
अब आप घूम जाइए और विपरीत दिशा में चलते हुए शून्य को उठाइए और उसे भी थैले में रख दीजिए। अब आपको पूर्ण संख्याओं (whole numbers) का एक संग्रह प्राप्त हो जाता है। जिसे प्रतीक
अब, आपको अनेक-अनेक ॠणात्मक पूर्णांक दिखाई देते हैं। आप इन सभी ऋणात्मक पूर्णांकों को अपने थैले में डाल दीजिए। क्या आप बता सकते हैं कि आपका यह नया संग्रह क्या है? आपको याद होगा कि यह सभी पूर्णांकों (integers) का संग्रह है और इसे प्रतीक
क्या अभी भी रेखा पर संख्याएँ बची रहती हैं? निश्चित रूप से ही, रेखा पर संख्याएँ बची रहती हैं। ये संख्याएँ
का संग्रह हो जाएगा। परिमेय संख्याओं के संग्रह को
अब आपको याद होगा कि परिमेय संख्याओं की परिभाषा इस प्रकार दी जाती है :
संख्या ’
अब आप इस बात की ओर ध्यान दीजिए कि थैले में रखी सभी संख्याओं को
रेखा पर निरूपित करते हैं, तब हम यह मान लेते हैं कि
आइए अब हम विभिन्न प्रकार की संख्याओं, जिनका अध्ययन आप पिछली कक्षाओं मे कर चुके हैं, से संबंधित कुछ उदाहरण हल करें।
टिप्पणी : ध्यान दीजिए कि उदाहरण 2 में 1 और 2 के बीच स्थित केवल पाँच परिमेय संख्याएँ ही ज्ञात करने के लिए कहा गया था। परन्तु आपने यह अवश्य अनुभव किया होगा कि वस्तुतः 1 और 2 के बीच अपरिमित रूप से अनेक परिमेय संख्याएँ होती हैं। व्यापक रूप में, किन्हीं दो दी हुई परिमेय संख्याओं के बीच अपरिमित रूप से अनेक परिमेय संख्याएँ होती हैं।
आइए हम संख्या रेखा को पुनः देखें। क्या आपने इस रेखा पर स्थित सभी संख्याओं को ले लिया है? अभी तक तो नहीं। ऐसा होने का कारण यह है कि संख्या रेखा पर अपरिमित रूप से अनेक और संख्याएँ बची रहती हैं। आप द्वारा उठायी गई संख्याओं के स्थानों के बीच रिक्त स्थान हैं और रिक्त स्थान न केवल एक या दो हैं, बल्कि अपरिमित रूप से अनेक हैं। आश्चर्यजनक बात तो यह है कि किन्ही दो रिक्त स्थानों के बीच अपरिमित रूप से अनेक संख्याएँ स्थित होती हैं।
अतः, हमारे सामने निम्नलिखित प्रश्न बचे रह जाते हैं:
1. संख्या रेखा पर बची हुई संख्याओं को क्या कहा जाता है?
2. इन्हें हम किस प्रकार पहचानते हैं? अर्थात् इन संख्याओं और परिमेय संख्याओं के बीच हम किस प्रकार भेद करते हैं?
इन प्रश्नों के उत्तर अगले अनुच्छेद में दिए जाएँगे।
1.2 अपरिमेय संख्याएँ
पिछले अनुच्छेद में, हमने यह देखा है कि संख्या रेखा पर ऐसी संख्याएँ भी हो सकती हैं जो परिमेय संख्याएँ नहीं हैं। इस अनुच्छेद में, अब हम इन संख्याओं पर चर्चा करेंगे। अभी तक हमने जिन संख्याओं पर चर्चा की है, वे
लगभग 400 सा॰यु॰पू०, ग्रीस के प्रसिद्ध गणितज्ञ और दार्शनिक पाइथागोरस के अनुयायियों ने इन संख्याओं का सबसे पहले पता लगाया था। इन संख्याओं को अपरिमेय संख्याएँ (irrational numbers) कहा जाता है, क्योंकि इन्हें पूर्णांकों के अनुपात के रूप में नहीं लिखा जा सकता है। पाइथागोरस के एक अनुयायी, क्रोटोन के हिपाक्स द्वारा पता लगायी गई अपरिमेय संख्याओं के संबंध में अनेक किंवदंतियाँ हैं। हिपाक्स का एक दुर्भाग्यपूर्ण अंत रहा, चाहे इसका कारण इस बात की खोज हो कि
पाइथागोरस
(569 सा० यु॰ पू०- 479 सा० यु॰ पू०) आकृति 1.3
आइए अब हम इन संख्याओं की औपचारिक परिभाषा दें।
संख्या ’
आप यह जानते हैं कि अपरिमित रूप से अनेक परिमेय संख्याएँ होती हैं। इसी प्रकार, अपरिमेय संख्याएँ भी अपरिमित रूप से अनेक होती हैं। इनके कुछ उदाहरण हैं:
टिप्पणी : आपको याद होगा कि जब कभी हम प्रतीक "
ऊपर दी गई कुछ अपरिमेय संख्याओं के बारे में आप जानते हैं। उदाहरण के लिए, ऊपर दिए गए अनेक वर्गमूलों और संख्या
पाइथागोरस के अनुयायियों ने यह सिद्ध किया है कि
आइए हम पिछले अनुच्छेद के अंत में उठाए गए प्रश्नों पर पुनः विचार करें। इसके लिए परिमेय संख्याओं वाला थैला लीजिए। अब यदि हम थैले में सभी अपरिमेय संख्याएँ भी डाल दें, तो क्या अब भी संख्या रेखा पर कोई संख्या बची रहेगी? इसका उत्तर है “नहीं”। अतः, एक साथ ली गई सभी परिमेय संख्याओं और अपरिमेय संख्याओं के संग्रह से जो प्राप्त होता है, उसे वास्तविक संख्याओं (real numbers) का नाम दिया जाता
है, जिसे
आइए देखें कि संख्या रेखा पर हम कुछ अपरिमेय संख्याओं का स्थान निर्धारण किस प्रकार कर सकते हैं।
1.3 वास्तविक संख्याएँ और उनके दशमलव प्रसार
इस अनुच्छेद में, हम एक अलग दृष्टिकोण से परिमेय और अपरिमेय संख्याओं का अध्ययन करेंगे। इसके लिए हम वास्तविक संख्याओं के दशमलव प्रसार (expansions) पर विचार करेंगे और देखेंगे कि क्या हम परिमेय संख्याओं और अपरिमेय संख्याओं में भेद करने के लिए इन प्रसारों का प्रयोग कर सकते हैं या नहीं। यहाँ हम इस बात की भी व्याख्या करेंगे कि वास्तविक संख्याओं के दशमलव प्रसार का प्रयोग करके किस प्रकार संख्या रेखा पर वास्तविक संख्याओं को प्रदर्शित किया जाता है। क्योंकि हम अपरिमेय संख्याओं की तुलना में परिमेय संख्याओं से अधिक परिचित हैं, इसलिए हम अपनी चर्चा इन्हीं संख्याओं से प्रारंभ करेंगे। यहाँ इनके तीन उदाहरण दिए गए हैं :
यहाँ आपने किन-किन बातों पर ध्यान दिया है? आपको कम से कम तीन बातों पर ध्यान देना चाहिए।
(i) कुछ चरण के बाद शेष या तो 0 हो जाते हैं या स्वयं की पुनरावृत्ति करना प्रारंभ कर देते हैं।
(ii) शेषों की पुनरावृत्ति शृंखला में प्रविष्टियों (entries) की संख्या भाजक से कम होती है (
(iii) यदि शेषों की पुनरावृत्ति होती हो, तो भागफल (quotient) में अंकों का एक पुनरावृत्ति खंड प्राप्त होता है (
यद्यपि केवल ऊपर दिए गए उदाहरणों से हमने यह प्रतिरूप प्राप्त किया है, परन्तु यह
स्थिति (i) : शेष शून्य हो जाता है।
स्थिति (ii) : शेष कभी भी शून्य नहीं होता है।
यह दिखाने के लिए कि
इसके विपरीत अब आप यह मान लीजिए कि संख्या रेखा पर चलने पर आपको 3.142678 जैसी संख्याएँ प्राप्त होती हैं जिसका दशमलव प्रसार सांत होता है या
एक परिमेय संख्या का दशमलव प्रसार या तो सांत होता है या अनवसानी आवर्ती होता है। साथ ही, वह संख्या, जिसका दशमलव प्रसार सांत या अनवसानी आवर्ती है, एक परिमेय संख्या होती है।
अब हम यह जानते हैं कि परिमेय संख्या का दशमलव प्रसार क्या हो सकता है। अब प्रश्न उठता हैं कि अपरिमेय संख्याओं का दशमलव प्रसार क्या होता है? ऊपर बताए गए गुण के अनुसार हम यह निष्कर्ष निकाल सकते हैं कि इन संख्याओं के दशमलव प्रसार अनवसानी अनावर्ती (non-terminating non-recurring) हैं। अतः ऊपर परिमेय संख्याओं के लिए बताए गए गुण के समान अपरिमेय संख्याओं का गुण यह होता है:
एक अपरिमेय संख्या का दशमलव प्रसार अनवसानी अनावर्ती होता है। विलोमतः वह संख्या जिसका दशमलव प्रसार अनवसानी अनावर्ती होता है, अपरिमेय होती है।
पिछले अनुच्छेद में हमने एक अपरिमेय संख्या
सुप्रसिद्ध अपरिमेय संख्याओं
( ध्यान दीजिए कि हम प्राय:
वर्षों से गणितज्ञों ने अपरिमेय संख्याओं के दशमलव प्रसार में अधिक से अधिक अंकों को उत्पन्न करने की विभिन्न तकनीक विकसित की हैं। उदाहरण के लिए, संभवतः आपने विभाजन विधि (division method) से
ध्यान दीजिए कि यह वही है जो कि ऊपर प्रथम पाँच दशमलव स्थानों तक के लिए दिया गया है।
यूनान का प्रबुद्ध व्यक्ति आर्कमिडीज ही वह पहला व्यक्ति था जिसने
आर्कमिडीज
( 287 सा० यु० पू० -212 सा० यु० पू० ) आकृति 1.10
आइए अब हम देखें कि किस प्रकार अपरिमेय संख्याएँ प्राप्त की जाती हैं।
1.4 वास्तविक संख्याओं पर संक्रियाएँ
पिछली कक्षाओं में, आप यह पढ़ चुके हैं कि परिमेय संख्याएँ योग और गुणन के क्रमविनिमेय (commutative), साहचर्य (associative) और बंटन (distributive) नियमों को संतुष्ट करती हैं और हम यह भी पढ़ चुके हैं कि यदि हम दो परिमेय संख्याओं को जोड़ें, घटाएँ, गुणा करें या (शून्य छोड़कर) भाग दें, तब भी हमें एक परिमेय संख्या प्राप्त होती है [अर्थात् जोड़, घटाना, गुणा और भाग के सापेक्ष परिमेय संख्याएँ संवृत (closed) होती हैं]। यहाँ
हम यह भी देखते हैं कि अपरिमेय संख्याएँ भी योग और गुणन के क्रमविनिमेय, साहचर्य और बंटन-नियमों को संतुष्ट करती हैं। परन्तु, अपरिमेय संख्याओं के योग, अंतर, भागफल और गुणनफल सदा अपरिमेय नहीं होते हैं। उदाहरण के लिए,
आइए अब यह देखें कि जब एक परिमेय संख्या में अपरिमेय संख्या जोड़ते हैं और एक परिमेय संख्या को एक अपरिमेय संख्या से गुणा करते हैं, तो क्या होता है। उदाहरण के लिए,
इन उदाहरणों से आप निम्नलिखित तथ्यों के होने की आशा कर सकते हैं जो सत्य हैं:
(i) एक परिमेय संख्या और एक अपरिमेय संख्या का जोड़ या घटाना अपरिमेय होता है।
(ii) एक अपरिमेय संख्या के साथ एक शून्येतर (non-zero) परिमेय संख्या का गुणनफल या भागफल अपरिमेय होता है।
(iii) यदि हम दो अपरिमेय संख्याओं को जोड़ें, घटायें, गुणा करें या एक अपरिमेय संख्या को दूसरी अपरिमेय संख्या से भाग दें, तो परिणाम परिमेय या अपरिमेय कुछ भी हो सकता है।
अब हम अपनी चर्चा वास्तविक संख्याओं के वर्गमूल निकालने की संक्रिया (operation) पर करेंगे। आपको याद होगा कि यदि
मान लीजिए
अनुच्छेद 1.2 में, हमने यह देखा है कि किस प्रकार संख्या रेखा पर
आकृति 1.11 ज्यामीतीय रूप से प्राप्त करेंगे।
एक दी हुई रेखा पर एक स्थिर बिन्दु
कीजिए और उस बिंदु को
आकृति 1.12
हम इस परिणाम को पाइथागोरस प्रमेय की सहायता से सिद्ध कर सकते हैं।
ध्यान दीजिए कि आकृति 1.12 में,
अत:,
अब,
अतः, पाइथागोरस प्रमेय लागू करने पर, हमें यह प्राप्त होता है:
इससे यह पता चलता है कि
इस रचना से यह दर्शाने की एक चित्रीय और ज्यामितीय विधि प्राप्त हो जाती है कि सभी वास्तविक संख्याओं
आकृति 1.13
अब हम वर्गमूल की अवधारणा को घनमूलों, चतुर्थमूलों और व्यापक रूप से
इन उदाहरणों से क्या आप
मान लीजिए
अब हम यहाँ वर्गमूलों से संबंधित कुछ सर्वसमिकाएँ (identities) दे रहे हैं जो विभिन्न विधियों से उपयोगी होती हैं। पिछली कक्षाओं में आप इनमें से कुछ सर्वसमिकाओं से परिचित हो चुके हैं। शेष सर्वसमिकाएँ वास्तविक संख्याओं के योग पर गुणन के बंटन नियम से और सर्वसमिका
मान लीजिए
(i)
(ii)
(iii)
(iv)
(v)
(vi)
आइए हम इन सर्वसमिकाओं की कुछ विशेष स्थितियों पर विचार करें।
टिप्पणी: ध्यान दीजिए कि ऊपर के उदाहरण में दिए गए शब्द “सरल करना” का अर्थ यह है कि व्यंजक को परिमेय संख्याओं और अपरिमेय संख्याओं के योग के रूप में लिखना चाहिए।
हम इस समस्या पर विचार करते हुए कि
1.5 वास्तविक संख्याओं के लिए घातांक-नियम
क्या आपको याद है कि निम्नलिखित का सरलीकरण किस प्रकार करते हैं?
(i)
(ii)
(iii)
(iv)
क्या आपने निम्नलिखित उत्तर प्राप्त किए थे?
(i)
(ii)
(iii)
(iv)
इन उत्तरों को प्राप्त करने के लिए, आपने निम्नलिखित घातांक-नियमों (laws of exponents) का प्रयोग अवश्य किया होगा, [यहाँ
(i)
(ii)
(iii)
(iv)
अतः, उदाहरण के लिए :
(iii)
मान लीजिए हम निम्नलिखित अभिकलन करना चाहते हैं :
(i)
हम ये अभिकलन किस प्रकार करेंगे? यह देखा गया है कि वे घातांक-नियम, जिनका अध्ययन हम पहले कर चुके हैं, उस स्थिति में भी लागू हो सकते हैं, जबकि आधार धनात्मक वास्तविक संख्या हो और घातांक परिमेय संख्या हो (आगे अध्ययन करने पर हम यह देखेंगे
कि ये नियम वहाँ भी लागू हो सकते हैं, जहाँ घातांक वास्तविक संख्या हो।)। परन्तु, इन नियमों का कथन देने से पहले और इन नियमों को लागू करने से पहले, यह समझ लेना आवश्यक है कि, उदाहरण के लिए,
मान लीजिए
घातांकों की भाषा में, हम
अतः, हमें यह परिभाषा प्राप्त होती है:
मान लीजिए
अतः वांछित विस्तृत घातांक नियम ये हैं:
मान लीजिए
(iii)
(iv)
अब आप पहले पूछे गए प्रश्नों का उत्तर ज्ञात करने के लिए इन नियमों का प्रयोग कर सकते हैं।
1.6 सारांश
इस अध्याय में, आपने निम्नलिखित बिन्दुओं का अध्ययन किया है:
1. संख्या
2. संख्या
3. एक परिमेय संख्या का दशमलव प्रसार या तो सांत होता है या अनवसानी आवर्ती होता है। साथ ही, वह संख्या, जिसका दशमलव प्रसार सांत या अनवसानी आवर्ती है, परिमेय होती है।
4. एक अपरिमेय संख्या का दशमलव प्रसार अनवसानी अनावर्ती होता है। साथ ही, वह संख्या जिसका दशमलव प्रसार अनवसानी अनावर्ती है, अपरिमेय होती है।
5. सभी परिमेय और अपरिमेय संख्याओं को एक साथ लेने पर वास्तविक संख्याओं का संग्रह प्राप्त होता है।
6. यदि
7. धनात्मक वास्तविक संख्याओं
(i)
(ii)
(iii)
(iv)
(v)
8.
9. मान लीजिए
(i)
(ii)
(iii)
(iv)