रसायन विज्ञान की कुछ मूल अवधारणाएँ SOME BASIC CONCEPTS OF CHEMISTRY

विज्ञान को मानव द्वारा प्रकृति को समझने और उसका वर्णन करने के लिए ज्ञान को व्यवस्थित करने के निरंतर प्रयास के रूप में देखा जा सकता है। आपने अपनी पिछली कक्षाओं में जाना कि हम प्रतिदिन प्रकृति में उपस्थित विभिन्न पदार्थों और उनमें परिवर्तनों को देखते हैं। दूध से दही बनना, लंबे समय तक गन्ने के रस को रखने पर उससे सिरका बनना और लोहे में ज़ंग लगना परिवर्तनों के कुछ ऐसे उदाहरण हैं जिन्हें हम बहुत बार देखते हैं। सुविधा के लिए विज्ञान को विभिन्न शाखाओं जैसे रसायन, भौतिकी, जीव विज्ञान, भू-विज्ञान आदि में वर्गीकृत किया गया है। विज्ञान की वह शाखा जिसमें पदार्थों के संश्लेषण संघटन, गुणधर्म और अभिक्रियाओं का अध्ययन किया जाता है रसायन कहलाती है।

रसायन विज्ञान का विकास

रसायन, जैसा आज हम इसे समझते हैं, बहुत पुराना विज्ञान नहीं है। रसायन का अध्ययन केवल इसके ज्ञान के लिए नहीं किया गया अपितु यह दो रोचक वस्तुओं की खोज के कारण उभरा, ये थीं -

(i) पारस पत्थर जो लोहे और ताँबे जैसी धातुओं को सोने में बदल सकता हो।

(ii) अमृत, जिससे अमरत्व प्राप्त हो जाए।

पुरातन भारत में लोगों को आधुनिक विज्ञान के उभरने से बहुत पहले से अनेकों वैज्ञानिक तथ्यों की जानकारी थी। वह उस ज्ञान का उपयोग जीवन के विभिन्न क्षेत्रों में करते थे। रसायन का विकास प्रमुखतः 1300 से 1600CE में कीमिया (ऐल्किमी) और औषध रसायन के रूप में हुआ। आधुनिक रसायन ने अट्ठारहवीं शताब्दी में यूरोप में कुछ ऐल्किमी परम्पराओं के पश्चात् आकार प्राप्त किया जो यूरोप में अरबों द्वारा लाई गई थीं।

दूसरी संस्कृतियों, विशेषकर चीनी और भारतीय में, अपनी अलग ऐल्किमी परंपराएँ थी। जिनमें रासायनिक प्रक्रम और तकनीक की जानकारी अधिक थी।

पुरातन भारत में रसायन को रसायन शास्त्र, रसतन्त्र, रसक्रिया अथवा रसविद्या कहा जाता था। इनमें धातु-कर्म, औषध, कान्तिवर्धक, काँच, रंजक इत्यादि सम्मिलित थे। सिंध में मोहनजोदाड़ो और पंजाब में हड़प्पा में की गई योजनाबद्ध खुदाई से सिद्ध होता है कि भारत में रसायन के विकास की कहानी बहुत पुरानी है। पुरातात्विक परिणामों से पता चलता है कि निर्माण के लिए पक्की ईंटों का उपयोग होता था। और मिट्टी के बर्तनों का उत्पादन अधिक मात्रा में किया जाता था। इसे प्राचीनतम रासायनिक प्रक्रम माना जा सकता है जिसमें वाँछनीय गुण प्राप्त करने के लिए पदार्थों को मिलाकर ढाला और अग्नि द्वारा गरम किया जाता था। मोहनजोदाड़ो में ग्लेज़ किए हुए मिट्टी के बर्तनों के अवशेष प्राप्त हुए हैं। निर्माण कार्य में जिप्सम सीमेंट का उपयोग किया गया है जिसमें चूना, रेत और सूक्ष्म मात्रा में CaCO3 मिलाया गया है । हड़प्पा के लोग फेएन्स बनाते थे जो एक प्रकार का काँच होता है जिसका उपयोग आभूषणों में किया जाता था। वह सीसा, चाँदी, सोना और ताँबा जैसी धातुओं को पिघलाकर और फोर्जन द्वारा विभिन्न प्रकार की वस्तुएँ बनाते थे। वह टिन और आर्सेनिक मिला कर शिल्प बनाने के लिए ताँबे की कठोरता सुधारते थे। दक्षिण भारत में मस्की (1000900BCE) तथा उत्तर भारत में हस्तिनापुर और तक्षशिला (1000200BCE) में काँच की वस्तुएँ प्राप्त हुई हैं। काँच और ग्लेज़ को रंगने के लिए धातुओं के ऑक्साइड मिलाए जाते थे।

भारत में ताँबे के धातु-कर्म का प्रारंभ उपमहाद्वीप में ताम्र युग के प्रारंभ से ही शुरू हो गया था। अनेक पुरातात्विक प्रमाण हैं जिनसे इस मत को बल मिलता है कि ताँबे और लोहे के निष्कर्षण की तकनीक भारत में ही विकसित हुई थी।

ॠगवेद के अनुसार 1000 - 400BCE में चर्म संस्करण और कपास को रंगने का कार्य होता था। उत्तर भारत के काली पॉलिश वाले मिट्टी के बर्तनों की सुनहरी चमक को दोहराया नहीं जा सका और यह अब भी एक रासायनिक रहस्य है। इन बर्तनों से पता चलता है कि भट्टियों का ताप कितनी दक्षता से नियंत्रित किया जाता था। कौटिल्य के अर्थशास्त्र में समुद्र से लवण प्राप्त करने का वर्णन है।

पुराने वैदिक साहित्य में वर्णित अनेकों पदार्थ और कथन आधुनिक विज्ञान की खोजों से मेल खाते हैं। ताँबे के बर्तन, लोहा, सोना, चाँदी के आभूषण और टेराकोटा तश्तरियाँ तथा चित्रकारी किए हुए मिट्टी के सलेटी बर्तन, उत्तर भारत के बहुत से पुरातत्व स्थलों से प्राप्त हुए हैं। सुश्रुत संहिता में क्षारकों का महत्व समझाया गया है। चरक संहिता में पुरातन काल के उन भारतीयों का उल्लेख है जिन्हें सल्फ़्यूरिक अम्ल, नाइट्रिक अम्ल और ताँबे, टिन और जस्ते के ऑक्साइड; ताँबे, जस्ते और लोहे के सल्फेट एवं सीसे तथा लोहे के कार्बोनेट बनना आता था।

रसोपनिषद में बारूद बनने का विवरण है। तमिल साहित्य में भी गंधक, चारकोल साल्टपीटर (पोटैशियम नाइट्रेट), पारा और कपूर के उपयोग से पटाखे बनने का विवरण है।

नागार्जुन एक महान भारतीय वैज्ञानिक हुए हैं। वह एक विख्यात रसायनज्ञ, ऐल्केमिस्ट तथा धातुविज्ञानी थे। उनकी रचना रसरत्नाकर पारे के यौगिकों से संबंधित है। उन्होंने धातुओं, जैसे सोना, चाँदी, टिन और ताँबे के निष्कर्षण की भी विवेचना की है। 800CE के आस-पास एक पुस्तक रसारनवम् आई। इसमें विभिन्न प्रकार की भट्टियों, अवनों और क्रूसिबलों के अलग-अलग उद्देश्यों के लिए उपयोगों की विवेचना की गई है। इसमें उन विधियों का विवरण दिया है जिनसे ज्वाला के रंग से धातु को पहचाना जाता था।

कक्रपाणि ने मर्क्यूरिक सल्फाइड की खोज की। साबुन की खोज का श्रेय भी उन्हीं को जाता है। उन्होंने साबुन बनाने के लिए सरसों का तेल और कुछ क्षार उपयोग किए। भारतीयों ने अट्ठारहवीं शताब्दी CE में साबुन बनाना प्रारंभ कर दिया था। साबुन बनाने के लिए अरंड का तेल महुआ के बीज और कैल्सियम कार्बोनेट का उपयोग किया जाता था।

अजन्ता और ऐलोरा की दीवारों पर पाई गई चित्रकारी, जो अनेकों वर्ष बाद भी नई जैसी लगती है, पुरातन भारत में विज्ञान का ज्ञान शिखर पर होना सिद्ध करती हैं। वराहमिहिर की वृहत संहिता जिसे छठी शताब्दी CE में लिखा गया था एक प्रकार का विश्वकोश है। इसमें दीवारों, छतों, घरों और मंदिरों पर लगाए जाने वाले लसदार पदार्थ को बनाने की जानकारी है। इसे केवल पौधों, फलों, बीजों और छालों के रस से बनाया जाता था जिन्हें उबाल कर गाढ़ा करने के बाद उनमें कई प्रकार के रेजिन मिलाए जाते थे। ऐसे पदार्थों का वैज्ञानिक तरीके से परीक्षण करने के पश्चात् उनकी उपयोगिता का आकलन करना रोचक होगा।

अथर्ववेद (1000BCE) जैसे कई प्रतिष्ठित ग्रंथों में रंजकों का वर्णन है जिनमें हल्दी, मदेर, सूरजमुखी, हरताल, करमीज और लाख शामिल हैं। रंगने के गुण वाले कुछ अन्य पदार्थ जो उपयोग में आते थे वह थे कम्पलसिका, पातंगा, जटुका। वराहमिहिर की वृहत संहिता में इत्र तथा कान्तिवर्धकों का भी उल्लेख है। केश रंगने का रंग बनाने के लिए पौधा, जैसे नील तथा खनिज जैसे लौह चूर्ण, काला लोहा या स्टील तथा चावल के खट्टे दलिए का अम्लीय सत्व उपयोग किया जाता था। गंधयुक्ति में इत्र, मुख सुवासित करने के द्रव, नहाने के पाउडर, सुगंध एवं टेल्कम पाउडर का उल्लेख है।

भारत में इस अवधारणा का आगमन कि द्रव्य अविभाज्य कणों से बना होता है, BCE की अन्तिम सदी में दार्शानिक चिन्तन के एक भाग की तरह हुआ। 600BCE में जन्मे आचार्य कणाद जिनका वास्तविक नाम कश्यप था, ‘परमाण्विक सिद्धांत’ के प्रस्तावक थे। उन्होंने अति सूक्ष्म अविभाज्य कणों के सिद्धांत का प्रतिपादन किया। इन कणों को उन्होंने परमाणु (ऐटम के समतुल्य) नाम दिया। उन्होंने ‘वैषेशिका सूत्र’ पुस्तक लिखी। उनके अनुसार सभी पदार्थ छोटी इकाइयों का समूह हैं जिन्हें परमाणु (ऐटम) कहते हैं। यह अनादि-अनन्त, अविभाज्य, गोलाकार, अति-गुणग्राही तथा मूल अवस्था में गतिशील होते हैं। उन्होंने स्पष्ट किया कि इस अकेली इकाई का बोध मनुष्य की किसी भी ज्ञानेन्द्री द्वारा नहीं होता। कणाद ने यह भी बताया कि परमाणु अनेक प्रकार के होते हैं और पदार्थों के विभिन्न वर्गों के अनुसार इनमें भी भिन्नता होती है। उन्होंने कहा कि अन्य संयोजनों के अतिरिक्त दो या तीन परमाणु भी संयोजित हो सकते हैं। उन्होंने इस सिद्धांत की अवधारणा जॉन डाल्टन (1766 - 1844) से लगभग 2500 वर्ष पूर्व दे दी थी।

चरक संहिता भारत का सबसे पुराना आयुर्वेद का ग्रंथ है। इसमें रोगों के उपचार का विवरण दिया है। कणों के आकार को छोटा करने की संकल्पना की विवेचना चरक संहिता में स्पष्ट रूप से की गई है। कणों के आकार को अत्यधिक छोटा करने को नैनोटेक्नोलौजी कहते हैं। चरक संहिता में धातुओं की भस्मों का उपयोग रोगों के उपचार में किए जाने का वर्णन है। अब यह सिद्ध हो चुका है कि भस्मों में धातुओं के नैनो कण होते हैं।

ऐल्किमी के क्षीण हो जाने के पश्चात्, औषध रसायन स्थिर अवस्था में पहुँच गया परंतु बीसवीं शताब्दी में पाश्चात्य चिकित्साशास्त्र के आने और उसका प्रचलन होने से यह भी क्षीण हो गया। इस प्रगतिरोधक काल में भी आयुर्वेद पर आधारित औषध-उद्योग का अस्तित्व बना रहा, परंतु यह भी धीरे-धीरे क्षीण होता गया। नयी तकनीक सीखने और अपनाने में भारतीयों को 100150 वर्ष का समय लगा। इस समय बाहरी उत्पाद देश में प्रवेश कर गए। परिणामस्वरूप देशज पारंपरिक तकनीक धीरे-धीरे कम होती गई। भारतीय पटल पर आधुनिक विज्ञान उन्नीसवीं शताब्दी के अंतिम भाग में उभरा। उन्नीसवीं शताब्दी के मध्य तक यूरोपीय वैज्ञानिक भारत में आने लगे तथा आधुनिक रसायन का विकास होने लगा।

उपरोक्त वर्णन से आपने जाना कि रसायन द्रव्य के संघटन, संरचना, गुणधर्म तथा परस्पर क्रिया से संबंधित है। पदार्थ के मौलिक अवयवों-परमाणुओं तथा अणुओं के माध्यम से अच्छी प्रकार से समझा जा सकता है। यही कारण है कि रसायन विज्ञान ‘परमाणुओं तथा अणुओं का विज्ञान’ कहलाता है। क्या हम इन कणों (परमाणु एवं अणु) को देख सकते हैं, उनका भार माप सकते हैं और उनकी उपस्थिति का अनुभव कर सकते हैं? क्या किसी पदार्थ की निश्चित मात्रा में परमाणुओं और अणुओं की संख्या ज्ञात कर सकते हैं और क्या हम इन कणों की संख्या एवं उनके द्रव्यमान के मध्य मात्रात्मक संबंध प्राप्त कर सकते हैं? इस एकक में हम ऐसे ही कुछ प्रश्नों के उत्तर जानेंगे। इसके अतिरिक्त हम यहाँ पर यह भी वर्णन करेंगे कि किसी पदार्थ के भौतिक गुणों को उपयुक्त इकाइयों की सहायता से मात्रात्मक रूप से किस प्रकार दर्शाया जा सकता है।

1.1 रसायन विज्ञान का महत्त्व

विज्ञान में रसायन विज्ञान की महत्त्वपूर्ण भूमिका है, जो प्राय: विज्ञान की अन्य शाखाओं के साथ अभिन्न रूप से जुड़ी हुई है।

रसायन विज्ञान के सिद्धांतों का व्यावहारिक उपयोग विभिन्न क्षेत्रों जैसे मौसम विज्ञान, मस्तिष्क की कार्यप्रणाली, कंप्यूटर प्रचालन तथा उर्वरकों, क्षारों, अम्लों, लवणों, रंगों, बहुलकों, दवाओं, साबुनों, अपमार्जकों, धातुओं, मिश्र धातुओं आदि सहित नवीन सामग्री के निर्माण में लगे रासायनिक उद्योगों में होता है।

रसायन विज्ञान राष्ट्र की अर्थव्यवस्था में भी महत्वपूर्ण भूमिका निभाता है। मानव के जीवन-स्तर को ऊँचा उठाने हेतु भोजन, स्वास्थ्य - सुविधा की वस्तुएँ और अन्य सामग्री की आवश्यकताओं को पूरा करने में भी इसकी महत्त्वपूर्ण भूमिका है। विभिन्न उर्वरकों, जीवाणुनाशकों तथा कीटनाशकों की उत्तम किस्मों का उच्च स्तर पर उत्पादन इसके कुछ उदाहरण हैं। रसायन विज्ञान प्राकृतिक स्रोतों से जीवनरक्षक

औषधों के निष्कर्षण की विधियाँ बताता है और उनके संश्लेषण को संभव बनाता है। ऐसी औषधों के उदाहरण हैं, कैन्सर की चिकित्सा में प्रभावी औषधियाँ (जैसे- सिसप्लाटिन तथा टैक्सोल) और एड्स से ग्रस्त रोगियों के उपचार हेतु उपयोग में आनेवाली औषधि एजिडोथाईमिडिन (AZT)।

रसायन विज्ञान राष्ट्र के विकास में भी अत्यधिक योगदान देता है। रासायनिक सिद्धांतों की बेहतर जानकारी होने के बाद अब विशिष्ट चुंबकीय, विद्युतीय और प्रकाशीय गुणधर्मयुक्त पदार्थ संश्लेषित करना संभव हो गया है, जिसके फलस्वरूप अतिचालक सिरेमिक, सुचालक बहुलक, प्रकाशीय फाइबर (तंतु) जैसे पदार्थ संश्लेषित किए जा सकते हैं। रसायन विज्ञान ने उपयोगी वस्तुएँ जैसे अम्ल, क्षार, रंजक, बहुलक इत्यादि बनाने वाले उद्योग स्थापित करने में सहयता की है। यह उद्योग राष्ट्र की अर्थव्यवस्था में महत्वपूर्ण योगदान देते हैं और रोजगार उपलब्ध कराते हैं।

पिछले कुछ वर्षों में रसायन शास्त्र की सहायता से पर्यावरणीय प्रदूषण से संबंधित कुछ गंभीर समस्याओं को काफी सीमा तक नियंत्रित किया जा सका है। उदाहरणस्वरूप-समतापमंडल (stratosphere) में ओज़ोन अवक्षय (Ozone depletion) उत्पन्न करने वाले एवं पर्यावरण-प्रदूषक क्लोरोफ्लोरो कार्बन, अर्थात् सी.एफ.सी. (CFC) सदृश पदार्थों के विकल्प सफलतापूर्वक संश्लेषित कर लिये गए हैं, परंतु अभी भी पर्यावरण की अनेक समस्याएँ रसायनविदों के लिए गंभीर चुनौती बनी हुई हैं। ऐसी ही एक समस्या है ग्रीन-हाउस गैसों, जैसे-मेथेन, कार्बन डाइऑक्साइड आदि का प्रबंधन। रसायनविदों की भावी पीढ़ियों के लिए जैव-रासायनिक प्रक्रियाओं की समझ, रसायनों के व्यापक स्तर पर उत्पादन हेतु एन्जाइमों का उपयोग और नवीन मोहक पदार्थों का उत्पादन नई पीढ़ी के लिए कुछेक बौद्धिक चुनौतियाँ हैं। ऐसी चुनौतियों का सामना करने के लिए हमारे देश तथा अन्य विकासशील देशों को मेधावी और सृजनात्मक रसायनविदों की आवश्यकता है। एक अच्छा रसायनज्ञ बनने के लिए तथा ऐसी चुनौतियों को स्वीकारने के लिए रसायन की मूल अवधारणाओं को समझना आवश्यक है जो कि द्रव्य की प्रकृति से आरम्भ होती हैं। आइए हम द्रव्य की प्रकृति से प्रारम्भ करें।

1.2 द्रव्य की प्रकृति

अपनी पूर्व कक्षाओं से आप ‘द्रव्य’ शब्द से परिचित हैं। कोई भी वस्तु, जिसका द्रव्यमान होता है और जो स्थान घेरती है, द्रव्य कहलाती है। हमारे आसपास की सभी वस्तुएँ द्रव्य द्वारा बनी होती हैं। उदाहरण के लिए-पुस्तक, कलम, पेन्सिल, जल, वायु, सभी जीव आदि द्रव्य से बने होते हैं। आप जानते हैं कि इन सभी का द्रव्यमान होता है और ये स्थान घेरती हैं। आइए, हम द्रव्य की अवस्थाओं के गुणधर्मों को याद करें जिन्हें आपने पिछली कक्षाओं में पढ़ा है।

1.2.1 द्रव्य की अवस्थाएँ

आप यह जानते हैं कि द्रव्य की तीन भौतिक अवस्थाएँ संभव हैं- ठोस, द्रव और गैस। इन तीनों अवस्थाओं में द्रव्य के घटक-कणों को चित्र 1.1 में दर्शाया गया है।

चित्र 1.1 ठोस, द्रव और गैस में कणों की व्यवस्था

ठोसों में ये कण एक-दूसरे के बहुत पास क्रमबद्ध रूप से व्यवस्थित रहते हैं। ये बहुत गतिशील नहीं होते। द्रवों में कण पास-पास होते हैं, फिर भी ये गति कर सकते हैं, लेकिन ठोसों या द्रवों की अपेक्षा गैसों में कण बहुत दूर-दूर होते हैं। वे बहुत आसानी तथा तेज़ी से गति कर सकते हैं। कणों की इन व्यवस्थाओं के कारण द्रव्य की विभिन्न अवस्थाओं के निम्नलिखित अभिलक्षण होते हैं-

(i) ठोस का निश्चित आयतन और निश्चित आकार होता है।

(ii) द्रव का निश्चित आयतन होता है, परंतु आकार निश्चित नहीं होता है। वह उसी पात्र का आकार ले लेता है, जिसमें उसे रखा जाता है।

(iii) गैस का आयतन या आकार कुछ भी निश्चित नही रहता। वह उस पात्र के आयतन में पूरी तरह फैल जाती है, जिसमें उसे रखा जाता है।

ताप और दाब की परिस्थितियों के परिवर्तन द्वारा द्रव्य की इन तीन अवस्थाओं को एक-दूसरे में परिवर्तित किया जा सकता है।

 ठोस  गरम  ठंडा  द्रव  गरम  ठंडा  गैस 

सामान्यतया किसी ठोस को गरम करने पर वह द्रव में परिवर्तित हो जाता है और द्रव को गरम करने पर वह गैस या वाष्प में परिवर्तित हो जाता है। इसके विपरीत प्रक्रिया में गैस को ठंडा करने पर वह द्रवित होकर द्रव में परिवर्तित हो जाती है और अधिक ठंडा करने पर द्रव जमकर ठोस में परिवर्तित हो जाता है।

1.2.2 द्रव्य का वर्गीकरण

कक्षा-9 के पाठ-2 में आप जान चुके हैं कि स्थूल या बड़े स्तर पर द्रव्य को मिश्रण और शुद्ध पदार्थ के रूप में वर्गीकृत किया जा सकता है। इन्हें और आगे चित्र 1.2 के अनुसार उप-विभाजित किया जा सकता है।

जब किसी पदार्थ के सभी संघटक कण रासायनिक रूप से समान होते हैं तो इसे शुद्ध पदार्थ कहते हैं। मिश्रण में विभिन्न प्रकार के कण होते हैं। शुद्ध पदार्थ जिनसे मिश्रण बनता है, मिश्रण के घटक कहलाते हैं। किसी मिश्रण में दो या अधिक पदार्थो के कण किसी भी अनुपात में उपस्थित हो सकते हैं। आपके आसपास उपस्थित अधिकांश पदार्थ मिश्रण हैं। उदाहरण के लिए जल में चीनी का विलयन, हवा, चाय आदि सभी मिश्रण होते हैं। कोई मिश्रण समांगी या विषमांगी हो सकता है। किसी समांगी मिश्रण में घटक एक-दूसरे में पूर्णतया मिश्रित होते हैं। इसका अर्थ है कि मिश्रण में घटकों के कण संपूर्ण मिश्रण में एक समान रूप से बिखरे रहते हैं और पूरे मिश्रण का संघटन एक समान होता है। ‘जल में चीनी का विलयन’ और ‘हवा’ समांगी मिश्रण के उदाहरण हैं। इसके विपरीत विषमांगी मिश्रण का संघटन पूरे मिश्रण में एक समान नहीं होता। कभी-कभी तो विभिन्न घटकों को अलग-अलग देखा जा सकता है। उदाहरण के लिए चीनी और नमक तथा दाल के दानों और गंदगी (प्रायः छोटे कंकड़) के कणों के मिश्रण विषमांगी मिश्रण हैं। आप अपने दैनिक जीवन में प्रयुक्त ऐसे मिश्रणों के कई अन्य उदाहरणों के बारे में सोच सकते हैं। यहाँ यह बताना उचित होगा कि किसी मिश्रण के घटकों को हाथ से बीनने, छानने, क्रिस्टलन, आसवन आदि भौतिक विधियों के उपयोग द्वारा अलग किया जा सकता है।

शुद्ध पदार्थों के अभिलक्षण मिश्रणों से भिन्न होते हैं। शुद्ध पदार्थों के कणों का संघटन निश्चित होता है। मिश्रणों में दो या दो से अधिक शुद्ध पदार्थ घटक हो सकते हैं जो किसी भी अनुपात में उपस्थित हो सकते हैं और उनका संघटन भिन्न हो सकता है। ताँबा, चाँदी, सोना, जल, ग्लूकोस आदि शुद्ध पदार्थों के कुछ उदाहरण हैं। ग्लूकोस में कार्बन, हाइड्रोजन और ऑक्सीजन एक निश्चित अनुपात में होते हैं और इसके सभी कणों का संघटन एक जैसा होता है। अतः अन्य शुद्ध पदार्थों की तरह ग्लूकोस का निश्चित संघटन होता है। इसके अतिरिक्त ग्लूकोस के संघटकों कार्बन, हाइड्रोजन और ऑक्सीजन को सामान्य भौतिक विधियों से अलग नहीं किया जा सकता।

शुद्ध पदार्थों को पुनः तत्त्वों तथा यौगिकों में वर्गीकृत किया जा सकता है। इनमें एक ही प्रकार के कण होते हैं। ये कण परमाणु या अणु हो सकते हैं। आप अपनी पिछली कक्षाओं से परमाणुओं और अणुओं से परिचित होंगे, लेकिन आप उनके बारे में एकक-2 में विस्तार से पढ़ेंगे। सोडियम, हाइड्रोजन, ऑक्सीजन, ताँबा, चाँदी आदि तत्त्वों के कुछ उदाहरण हैं। इन सब में एक ही प्रकार के परमाणु होते हैं, परंतु विभिन्न तत्त्वों के परमाणु एक-दूसरे से भिन्न होते हैं। सोडियम अथवा ताँबे जैसे कुछ तत्त्वों में एकल परमाणु घटक कणों के रूप में उपस्थित होते हैं, जबकि कुछ अन्य तत्त्वों के घटक अणु होते हैं जो दो या अधिक परमाणुओं के संयोजन से बनते हैं। अतः हाइड्रोजन, नाइट्रोजन तथा ऑक्सीजन गैसों में इन तत्त्वों के अणु उपस्थित होते हैं, जो क्रमशः इनके दो-दो परमाणुओं के संयोजन से बनते हैं। इसे चित्र 1.3 में दिखाया गया है।

चित्र 1.3 परमाणुओं और अणुओं का निरूपण

जब भिन्न तत्त्वों के दो या दो अधिक परमाणु एक निश्चित अनुपात में संयोजित होते हैं, तब यौगिक का एक अणु प्राप्त होता है। किसी यौगिक के घटकों को भौतिक विधियों द्वारा सरल पदार्थों में पृथक् नहीं किया जा सकता है। उन्हें पृथक् करने के लिए रासायनिक विधियों का प्रयोग करना पड़ता है। जल, अमोनिया, कार्बन-डाइऑक्साइड, चीनी आदि यौगिकों के कुछ उदाहरण हैं। जल और कार्बन-डाइऑक्साइड के अणुओं को चित्र 1.4 में निरूपित किया गया है।

चित्र 1.4 जल और कार्बन डाइऑक्साइड के अणुओं का निरूपण

आपने चित्र 1.4 में देखा कि जल के एक अणु में दो हाइड्रोजन परमाणु और एक ऑक्सीजन परमाणु उपस्थित होते हैं। इसी प्रकार, कार्बन डाइऑक्साइड के अणु में ऑक्सीजन के दो परमाणु कार्बन के एक परमाणु से संयोजित होते हैं। अतः किसी यौगिक में विभिन्न तत्त्वों के परमाणु एक निश्चित और स्थिर अनुपात में उपस्थित होते हैं। यह अनुपात किसी यौगिक का अभिलाक्षणिक गुण होता है। इसके साथ ही किसी यौगिक के गुणधर्म उसके घटक तत्त्वों के गुणधर्मों से भिन्न होते हैं। उदाहरण के लिए- हाइड्रोजन और ऑक्सीजन गैसें हैं, परंतु उनके संयोजन से बना यौगिक, अर्थात् जल एक द्रव है। यह भी जानना रोचक होगा कि हाइड्रोजन एक तेज (pop) ध्वनि के साथ जलती है और ऑक्सीजन दहन में सहायक होती है, परंतु जल का उपयोग एक अग्निशामक के रूप में किया जाता है।

1.3 द्रव्य के गुणधर्म और उनका मापन

1.3.1 भौतिक एवं रासायनिक गुण

प्रत्येक पदार्थ के विशिष्ट या अभिलाक्षणिक गुणधर्म होते हैं। इन गुणधर्मों को दो वर्गों में वर्गीकृत किया जा सकता है- भौतिक गुणधर्म उदाहरणार्थ रंग, गंध, गलनांक, क्वथनांक, घनत्व आदि और रासायनिक गुणधर्म जैसे संघटन ज्वलनशीलता, अम्ल, क्षार इत्यादि के साथ अभिक्रियाशीलता।

भौतिक गुणधर्मो को पदार्थ की पहचान या संघटन को परिवर्तित किए बिना मापा या देखा जा सकता है। रासायनिक गुणधर्मों को मापने या देखने के लिए रासायनिक परिवर्तन का होना आवश्यक होता है। भौतिक गुणों को मापने के लिए रासायनिक परिवर्तन का होना आवश्यक नहीं होता। विभिन्न पदार्थों की अभिलाक्षणिक अभिक्रियाएँ (जैसे - अम्लता, क्षारता, दाह्यता आदि) रासायनिक गुणधर्मों के उदाहरण हैं। रसायनज्ञ भौतिक एवं रासायनिक गुणों के आधार पर पदार्थ के व्यवहार का पूर्वानुमान तथा व्याख्या करते हैं। यह सब सावधानी पूर्वक परीक्षण एवं मापन से निर्धारित होता है।

1.3.2 भौतिक गुण धर्मों का मापन

वैज्ञानिक अन्वेषण के लिए परिमाणात्मक मापन आवश्यक होता है। द्रव्य के अनेक गुणधर्म, जैसे - लंबाई, क्षेत्रफल, आयतन आदि, मात्रात्मक प्रकृति के होते हैं। किसी मात्रात्मक प्रेक्षण या मापन को कोई संख्या और उसके बाद वह इकाई लिखकर निरूपित किया जाता है, जिसमें उसे मापा गया है। उदाहरण के लिए- किसी कमरे की लंबाई को 6 m लिखकर बताया जा सकता है, जिसमें 6 एक संख्या है और m मीटर को व्यक्त करता है, जो वह इकाई है, जिसमें लंबाई नापी गई है।

पहले विश्व के विभिन्न भागों में मापन की दो विभिन्न पद्धतियाँ- ‘अंग्रेजी पद्धति’ (the English System) और ‘मीट्रिक पद्धति’ (the Metric System) प्रयुक्त की जाती थीं। मीट्रिक पद्धति, जो फ्रांस में अठारहवीं शताब्दी के उत्तरार्द्ध में विकसित हुई, अधिक सुविधाजनक थी, क्योंकि वह दशमलव प्रणाली पर आधारित थी। बाद में वैज्ञानिकों ने एक सर्वमान्य मानक पद्धति की आवश्यकता अनुभव की। ऐसी एक पद्धति सन् 1960 में प्रस्तुत की गई, जिसकी विस्तृत चर्चा नीचे की जा रही है।

1.3.3 मात्रकों की अंतर्राष्ट्रीय पद्धति (SI)

मात्रकों की अंतर्राष्ट्रीय पद्धति (फ्रांसीसी में Le System International d’Units), जिसे संक्षेप में SI (एस.आई.) कहा जाता है, को सन् 1960 में भार और माप के ग्यारहवें सर्व-सम्मेलन (conference Generale des Poios et Measures, CGPM) में स्वीकृत किया गया था। CGPM एक सरकारी संस्था है, जिसका गठन एक रासायनिक समझौते (जिसे मीटर परिपाटी कहते हैं और जिसपर सन् 1875 में पेरिस में हस्ताक्षर किए गए) के अंतर्गत किया गया।

SI पद्धति में सात आधार मात्रक हैं। इन्हें तालिका 1.1 में सूचीबद्ध किया गया है। ये मात्रक सात आधारभूत वैज्ञानिक राशियों से संबंधित हैं। अन्य भौतिक राशि (जैसे - गति, आयतन, घनत्व आदि) इन राशियों से व्युत्पन्न की जा सकती हैं। SI आधार मात्रकों की परिभाषाएँ तालिका 1.2 में दी गई हैं।

SI पद्धति में अपवर्त्यों और अपवर्तकों को व्यक्त करने के लिए पूर्वलग्नों का उपयोग किया जाता है। इन्हें तालिका 1.3 में सूचीबद्ध किया गया है। इनमें से कुछ राशियों का प्रयोग हम इस पुस्तक में करेंगे।

तालिका 1.1 आधार भौतिक राशियाँ और उनके मात्रक

आधार भौतिक राशि राशि के लिए प्रतीक SI मात्रक का नाम SI मात्रक का प्रतीक
लंबाई l मीटर m
द्रव्यमान m किलोग्राम kg
समय t सेकंड S
विद्युत्धारा I ऐम्पीयर A
ऊष्मागतिक T केल्विन K
तापक्रम mol
पदार्थ की मात्रा n मोल cd
ज्योति-तीव्रता Iv केन्डेला

तालिका 1.2 SI आधार मात्रकों की परिभाषाएँ

मापन के राष्ट्रीय मानकों का अनुरक्षण जैसा ऊपर बताया जा चुका है, मात्रकों का चलन (परिशिष्ट ‘क’) एवं उनकी परिभाषाएँ समय के साथ-साथ परिवर्तित होती हैं। जब भी नए सिद्धांतों को अपनाकर किसी विशेष मात्रक के मापन की यथार्थता में यथेष्ट वृद्धि की गई, मीटर संधि (सन् 1875 में हस्ताक्षरित) के सदस्य देश उस मात्रक की औपचारिक परिभाषा में परिवर्तन करने के लिए सहमत हो गए। भारत सहित प्रत्येक आधुनिक औद्योगीकृत देश में एक राष्ट्रीय मापन विज्ञान संस्थान (NMI - नेशनल मीट्रोलॉजी इंस्टिच्यूट) है, जो मापन के मानकों की देखभाल करती है। यह जिम्मेदारी नई दिल्ली स्थित राष्ट्रीय भौतिक प्रयोगशाला (NPL नेशनल फिज़िकल लैबोरेटरी) को दी गई है। इस प्रयोगशाला में मापन के मात्रकों के आधार तथा व्युत्पन्न मात्रकों को प्राप्त करने के लिए प्रयोग निर्धारित किए जाते हैं और मापन के राष्ट्रीय मानकों की देखभाल की जाती है। निश्चित अवधि के बाद इन मानकों की तुलना विश्व की अन्य राष्ट्रीय मानकों के अंतर्राष्ट्रीय ब्यूरो में प्रतिष्ठित मानकों के साथ की जाती है।

तालिका 1.3 SI पद्धति में प्रयुक्त पूर्वलग्न

गुणक पूर्वलग्न संकेत
1024 योक्टो y
1021 जेप्टो z
1018 ऐटो a
1015 फेम्टो f
1012 पिको p
109 नैनो n
106 माइक्रो μ
103 मिली m
102 सेंटी c
101 डेसी d
10 डेका da
102 हेक्टो h
103 किलो k
106 मेगा M
109 गीगा G
1012 टेरा T
1015 पेटा P
1018 एक्सा E
1021 जेटा Z
1024 योटा Y

1.3.4 द्रव्यमान और भार

किसी पदार्थ का द्रव्यमान उसमें उपस्थित द्रव्य की मात्रा है, जबकि किसी वस्तु का भार उसपर लगनेवाला गुरुत्व बल है। किसी पदार्थ का द्रव्यमान स्थिर होता है, परंतु उसका भार गुरुत्व में परिवर्तन के कारण एक स्थान से दूसरे स्थान पर अलग-अलग हो सकता है। आपको इन दोनों शब्दों के प्रयोग पर विशेष ध्यान रखना चाहिए।

प्रयोगशाला में किसी पदार्थ के द्रव्यमान के अधिक यथार्थपरक मापन के लिए वैश्लेषिक तुला (चित्र 1.5) का उपयोग किया जाता है।

चित्र 1.5 वैश्लेषिक तुला

जैसा तालिका 1.1 में दिया गया है, द्रव्यमान का SI मात्रक ‘किलोग्राम’ है, परंतु प्रयोगशाला में इसके छोटे मात्रक ‘ग्राम’ ( 1 किलोग्राम =1000 ग्राम) का प्रयोग किया जाता है, क्योंकि रासायनिक अभिक्रियाओं में रासायनिक पदार्थों की थोड़ी मात्रा का ही उपयोग किया जाता है।

1.3.5 आयतन

किसी पदार्थ द्वारा घेरे हुए स्थान को आयतन कहते हैं। आयतन के मात्रक (लम्बाई) 3 के होते हैं। अतः SI पद्धति में आयतन का मात्रक m3 होता है, परंतु रासायनिक प्रयोगशालाओं में इतने अधिक आयतनों का उपयोग नहीं किया जाता है। अतः आयतन को आम तौर पर cm3 या dm3 के मात्रकों में व्यक्त किया जाता है।

द्रवों के आयतन को मापने के लिए प्रायः लिटर (L) मात्रक का उपयोग किया जाता है, जो SI मात्रक नहीं है। 1 L=1000 mL अथवा 1000 cm3=1dm3 चित्र 1.6 में आप इन संबंधों को आसानी से देख सकते हैं। प्रयोगशाला में द्रवों या विलयनों के आयतन को मापने के लिए अंशांकित सिलिंडर, ब्यूरेट, पिपेट आदि का उपयोग किया जाता है। आयतनमापी फ्लास्क का उपयोग ज्ञात आयतन का विलयन बनाने के लिए किया जाता है। मापन के इन उपकरणों को चित्र 1.7 में दिखाया गया है।

1.3.6 घनत्व

उपरोक्त वर्णित दोनों गुण निम्न रूप से संबंधित हैं।

धनत्व = द्रव्यमान  आयतन 

किसी पदार्थ का घनत्व उसके प्रति इकाई आयतन का द्रव्यमान होता है। अतः घनत्व के SI मात्रक इस प्रकार प्राप्त किए जा सकते हैं -

घनत्व का SI मात्रक = द्रव्यमान का SI मात्रक  आयतन का SI मात्रक 

=kgm3 या kgm3

यह मात्रक बहुत बड़ा है। रसायनज्ञ प्रायः घनत्व को gcm3 में व्यक्त करते हैं, जहाँ द्रव्यमान को ग्राम (g) में और आयतन को cm3 में व्यक्त किया जाता है। किसी पदार्थ का घनत्व यह बताता है कि उसमें कण कितने पास-पास व्यवस्थित हैं। यदि घनत्व अधिक है तो इसका अर्थ है कि पदार्थ के कण बहुत पास-पास व्यवस्थित हैं।

1.3.7 ताप

ताप को मापने के तीन सामान्य पैमाने हैं - C (डिग्री सेल्सियस), F (डिग्री फारेनहाइट) और K (केल्विन)। यहाँ K (केल्विन) SI मात्रक है। इन पैमानों पर आधारित तापमापियों को चित्र 1.8 में दिखाया गया है। साधारणतया सेल्सियस पैमाने वाले तापमापियों को 0 से 100 तक अंशांकित किया जाता है, जहाँ ये दोनों ताप क्रमशः जल के हिमांक और क्वथनांक हैं। फॉरेनहाइट पैमाने को 32F और 212 के मध्य व्यक्त किया जाता है। इन दोनों पैमानों पर ताप एक-दूसरे से निम्नलिखित रूप में संबंधित है-

F=95(C)+32

केल्विन पैमाना सेल्सियस पैमाने से इस प्रकार संबंधित है-

K=C+273.15

चित्र 1.6 आयतन को व्यक्त करने के विभिन्न मात्रक

चित्र 1.7 आयतन मापने के विभिन्न उपकरण

चित्र 1.8 ताप के भिन्न-भिन्न पैमानों वाले तापमापी

संदर्भ-मानक

किलोग्राम या मीटर सदृश मापन के मात्रक की परिभाषा निश्चित करने के पश्चात् वैज्ञानिकों ने संदर्भ-मात्रकों की आवश्यकता अनुभव की, ताकि सभी मापन-उपकरणों को मानकीकृत किया जा सके। मीटर-छड़ों, विश्लेषीय तुलाओं आदि उपकरणों को उनके निर्माताओं द्वारा अंशांकित किया गया है, ताकि वे विश्वसनीय मापन दे सकें, परंतु इनमें से प्रत्येक उपकरण को किसी संदर्भ के सापेक्ष मानकीकृत किया गया था। सन् 1889 से द्रव्यमान का मानक किलोग्राम है, जो फ्रान्स के सेब्रेस में प्लेटिनम-इरिडियम (Pt-Ir) सिलिंडर के द्रव्यमान के रूप में परिभाषित किया गया है, जो भार तथा मापन के अंतर्राष्ट्रीय ब्यूरो में एक हवाबंद डिब्बे में रखा हुआ है। इस मानक के लिए Pt-Ir की मिश्रधातु का चयन किया गया, क्योंकि यह रासायनिक अभिक्रिया के प्रति अवरोधी है और अति दीर्घ काल तक इसके द्रव्यमान में कोई परिवर्तन नहीं आएगा।

द्रव्यमान के नए मात्रक के लिए वैज्ञानिकगण प्रयत्तशील हैं। इसके लिए आवोगाद्रो स्थिरांक का यथार्थपरक निर्धरण किया जा रहा है। एक प्रतिदर्श की सुपरिभाषित द्रव्यमान में परमाणुओं की संख्या के यथार्थ मापन पर इस नए मानक पर कार्य केंद्रित है। ऐसी एक पद्धति, जिसमें अतिविशुद्ध सिलिकॉन के क्रिस्टल के परमाणवीय घनत्व को एक्स-रे द्वारा मापा जाता है, की शुद्धता 106 में एक अंश है। इसे अभी तक मानक के रूप में स्वीकार नहीं किया गया है। और भी पद्धतियाँ हैं, परंतु इनमें से कोई भी पद्धति अभी Pt - Ir छड़ के विकल्प के रूप में समर्थ नहीं है। ऐसी आशा की जा सकती है कि वर्तमान दशक में कोई समुचित वैकल्पिक मानक विकसित किया जा सकेगा।

आरंभ में 0C(273.15 K) पर रखी एक PtIr छड़ पर दो निश्चित चिह्नों के मध्य की लंबाई को ‘मीटर’ परिभाषित किया गया था। सन् 1960 में मीटर की लंबाई को क्रिप्टॉन लेजर (Laser) से उत्सर्जित प्रकाश की तरंग-दैर्घ्य का 1.65076373×106 गुना माना गया। यद्यपि यह एक असुविधाजनक संख्या थी, किंतु यह मीटर की पूर्व सहमति लंबाई को सही रूप में दर्शाती है। सन् 1983 में CGPM द्वारा मीटर पुनर्परिभाषित किया गया, जो निर्वात में प्रकाश द्वारा 1/299.792 458 सेकंड में तय की गई दूरी है। लंबाई और द्रव्यमान की भाँति अन्य भौतिक राशियों के लिए भी संदर्भ मानक है। यह जानना रुचिकर होगा कि 0C से कम ताप (अर्थात् ॠणात्मक मान) सेल्सियस पैमाने पर तो संभव है, परंतु केल्विन पैमाने पर ताप का ऋणात्मक मान संभव नहीं है।

1.4 मापन में अनिश्चितता

रसायन के अध्ययन में अनेक बार हमें प्रायोगिक आँकड़ों के साथ साथ सैद्धांतिक गणनाओं पर विचार करना होता है। संख्याओं का सरलता से संचालन करना तथा आँकड़ों को यथा- संभव निश्चितता के साथ यथार्थ प्रस्तुति करने के अर्थपूर्ण तरीके भी हैं। इन्हीं मतों पर नीचे विस्तार से विचार किया जा रहा है।

1.4.1 वैज्ञानिक संकेतन

रसायन विज्ञान परमाणुओं और अणुओं के अध्ययन से संबंधित है, जिनके अत्यंत कम द्रव्यमान होते हैं और अत्यधिक संख्या होती है। अतः किसी रसायनज्ञ को 2 g हाइड्रोजन के अणुओं के लिए 662,200,000,000,000,000,000,000 जैसी बड़ी संख्या या हाइड्रोजन परमाणु के द्रव्यमान के लिए 0.000000000000000000000000166 g जैसी छोटी संख्या के साथ काम करना पड़ सकता है। इसी प्रकार प्लांक नियतांक, प्रकाश का वेग, कणों पर आवेश आदि में भी ऊपर दिए गए परिमाण जैसे परिमाणों वाली संख्याएँ होती हैं। एक क्षण के लिए इतनी सारी शून्यों वाली संख्याओं को लिखना और गिनना मज़ेदार लग सकता है, परंतु इन संख्याओं के साथ सरल गणितीय प्रचालन ( जैसे - जोड़ना, घटाना, गुणा करना या भाग देना) सचमुच एक चुनौती है। ऊपर दी गईं किन्हीं दो प्रकार की संख्याओं को आप लिखिए और उनपर कोई भी गणितीय प्रचालन कीजिए जिसे आप चुनौती के रूप में लेना चाहते हों जिससे आप सही प्रकार से यह समझ सकें कि संख्याओं के साथ कार्य करना वस्तुतः कितना कठिन है।

इस कठिनाई को इन संख्याओं के लिए वैज्ञानिक, अर्थात् चरघातांकी संकेतन के उपयोग द्वारा हल किया जा सकता है। इस संकेतन में किसी भी संख्या को N×10n के रूप में लिखा जाता है, जिसमें n चरघातांक है। इसका मान धनात्मक या ऋणात्मक हो सकता है और N का मान 1.000 और 9.999… के मध्य कोई भी संख्या हो सकती है। N को डिजिट टर्म कहते हैं।

अतः वैज्ञानिक संकेतन में 232.508 को 2.32508× 102 के रूप में लिखा जाता है। ध्यान दीजिए कि ऐसा लिखते समय दशमलव को दो स्थान बाईं ओर ले जाया गया है और वैज्ञानिक संकेतन में वह (2) 10 का चरघातांक है।

इसी प्रकार 0.00016 को 1.6×104 की तरह लिखा जा सकता है। यहाँ ऐसा करते समय दशमलव को चार स्थान दाईं ओर ले जाया गया है और वैज्ञानिक संकेतन में (4) चरघातांक है।

वैज्ञानिक संकेतन में व्यक्त संख्याओं पर गणितीय प्रचालन करते समय हमें निम्नलिखित बातों को ध्यान में रखना चाहिए-

गुणा और भाग करना

इन दो कार्यों के लिए चरघातांकी संख्या वाले नियम लागू होते हैं। जैसे -

(5.6×105)×(6.9×108)=(5.6×6.9)(105+8)=(5.6×6.9)×1013=38.64×1013=3.864×1014

और

(9.8×102)×(2.5×106)=(9.8×2.5)(102+(6)) =(9.8×2.5)(1026)=24.50×108 =2.450×107

तथा

2.7×1035.5×104=(2.7÷5.5)(1034)=0.4909×107=4.909×108

योग करना और घटाना

इन दो कार्यों के लिए पहले संख्याओं को इस प्रकार लिखना पड़ता है कि उनके चरघातांक समान हों। उसके बाद संख्याओं को जोड़ा या घटाया जा सकता है।

अतः 6.65×104 और 8.95×103 का योग करने के लिए पहले उनका चरघातांक समान करके इस प्रकार लिखा जाता है-

(6.65×104)+(0.895×104)

इसके बाद संख्याओं को इस प्रकार जोड़ा जा सकता है-

(6.65+0.895)×104=7.545×104

इसी प्रकार दो संख्याओं को यों घटाया जा सकता है-

(2.5×102)(4.8×103)

=(2.5×102)(0.48×102)=(2.50.48)×102=2.02×102

1.4.2 सार्थक अंक

प्रत्येक प्रायोगिक मापन में कुछ न कुछ अनिश्चितता अवश्य होती है, इसका कारण मानक यंत्र की सीमितता एवं मापने वाले व्यक्ति की दक्षता है। उदाहरणार्थ किसी वस्तु का द्रव्यमान सामान्य तराजू से 9.4 g आता है, यदि इसका द्रव्यमान वैश्लेषिक तुला से 9.4213 g मापा जाता है तो वैश्लेषिक तुला से मापा गया द्रव्यमान सामान्य तराजू से मापे गए द्रव्यमान से कुछ अधिक आया। अतः सामान्य तराजू से प्राप्त द्रव्यमान के मान में दशमलव के बाद वाले अंक 4 में अनिश्चितता है। परंतु परिणाम सदैव परिशुद्ध और यथार्थपरक होने चाहिए। जब भी हम मापन की बात करते हैं, तब परिशुद्धता और यथार्थ को भी ध्यान में रखा जाता है।

प्रायोगिक या परिकलित मानों में अनिश्चितता को सार्थक अंकों की संख्या के साथ एक अनिश्चित अंक मिलाकर व्यक्त किया जाता है। सार्थक अंक वे अर्थपूर्ण अंक होते हैं, जो निश्चित रूप से ज्ञात हों। अनिश्चितता को व्यक्त करने के लिए पहले निश्चित अंक लिखे जाते हैं और अनिश्चित अंक को अंतिम अंक के रूप में लिखा जाता है, अर्थात् यदि हम किसी परिणाम को 11.2 mL के रूप में लिखें, तो हम यह समझते हैं कि 11 निश्चित और 2 अनिश्चित है तथा अंतिम अंक में ±1 की अनिश्चितता होगी। यदि कुछ और न बताया गया हो, तो अंतिम अंक में सदैव ±1 की अनिश्चितता निहित मानी जाती है।

सार्थक अंकों को निर्धारित करने के कुछ नियम हैं। जो, यहाँ दिए जा रहे हैं -

(1) सभी गैर-शून्य अंक सार्थक होते हैं। उदाहरण के लिए285 cm में तीन सार्थक अंक और 0.25 mL में दो सार्थक अंक हैं।

(2) प्रथम गैर-शून्य अंक से पहले आने वाले शून्य सार्थक नहीं होते। ऐसे शून्य केवल दशमलव की स्थिति को बताते हैं। अतः 0.03 में केवल एक सार्थक अंक और 0.0052 में दो सार्थक अंक हैं।

(3) दो गैर-शून्य अंकों के मध्य स्थित शून्य सार्थक होते हैं। अतः 2.005 में चार सार्थक अंक हैं।

(4) किसी अंक की दारं ओर या अंत में आने वाले शून्य सार्थक होते हैं, परंतु उनके लिए शर्त यह है कि वे दशमलव की दाईं ओर स्थित हों। उदाहरण के लिए 0.200 में तीन सार्थक अंक हैं, परंतु दशमलव विहीन संख्याओं में दाईं ओर के शून्य सार्थक नहीं होते। उदाहरण के लिए 100 में केवल एक सार्थक अंक है। यद्यपि 100. में तीन सार्थक अंक है तथा 100.0 में चार सार्थक अंक है। ऐसी संख्याओं को वैज्ञानिक संकेतन में प्रदर्शित करना उपयुक्त होता है। हम एक सार्थक अंक के लिए 100 को 1×102, दो सार्थक अंकों के लिए 1.0×102 एवं तीन सार्थक अंकों के लिए 1.00×102 लिख सकते हैं।

(5) वस्तुओं की गिनती, उदाहरण के लिए 2 गेंदों या 20 अंडों में सार्थक अंकों की संख्या अनंत है, क्योंकि ये दोनों ही यथार्थपरक संख्याएँ हैं और इन्हें दशमलव लिखकर उसके बाद अनंत शून्य लिखकर व्यक्त किया जा सकता है, जैसे 2=2.000000 या 20=20.000000 वैज्ञानिक संकेतन में लिखी संख्याओं में सभी अंक सार्थक होते हैं। अतः 4.01×102 में तीन और 8.256×103 में चार सार्थक अंक हैं।

परिशुद्धता किसी भी राशि के विभिन्न मापनों के सामीप्य को व्यक्त करती है। परंतु यथार्थपरकता किसी विशिष्ट प्रायोगिक मान के वास्तविक मान से मेल रखने को व्यक्त करती है। उदाहरण के लिए- यदि किसी परिणाम का सही मान 2.00 g है और एक विद्यार्थी ‘क’ दो मापन करता है, उसे 1.95 g और 1.93 g परिणाम प्राप्त होते हैं। एक-दूसरे के बहुत पास होने के कारण ये मान परिशुद्ध हैं, परंतु यथार्थपरक नहीं हैं। दूसरा विद्यार्थी ‘ख’ इन्हीं दो मापनों के लिए 1.94 g और 2.05 g परिणाम प्राप्त करता है। ये दोनों परिणाम न तो परिशुद्ध हैं और न ही यथार्थपरक। तीसरे विद्यार्थी ’ गग’ को इन मापनों के लिए 2.01 g और 1.99 g परिणाम प्राप्त होते हैं। ये मान परिशुद्ध भी हैं और यथार्थपरक भी। इसे तालिका 1.4 से और आसानी से समझा जा सकता है।

तालिका 1.4 आँकड़ों की परिशुद्धता और यथार्थता का निरूपण

मापन/g
1 2 औसत (g)
छात्र क 1.95 1.93 1.940
छात्र ख 1.94 2.05 1.995
छात्र ग 2.01 1.99 2.000

सार्थक अंकों को जोड़ना और घटाना

जोड़ने या घटाने के बाद प्राप्त परिणाम में दशमलव की दाईं ओर जोड़ने या घटाने वाली किसी भी संख्या से अधिक अंक नहीं होने चाहिए। जैसे -

12.1118.01.01231.122

ऊपर दिए गए उदाहरण में 18.0 में दशमलव के बाद केवल एक अंक है, अतः परिणाम भी दशमलव के बाद एक ही अंक तक, अर्थात् 31.1 के रूप में ही व्यक्त करना चाहिए। सार्थक अंकों को गुणा या भाग करना

उन प्रचालनों के परिणाम में सार्थक अंकों की संख्या उतनी ही होनी चाहिए, जितनी न्यूनतम सार्थक अंक वाली संख्या में होती है। जैसे -

$$

2.5 \times 1.25=3.125 $$

चूँकि 2.5 में केवल दो सार्थक अंक हैं, इसलिए परिणाम में भी दो सार्थक अंक (3.1) होने चाहिए।

जैसा उपरोक्त गणितीय प्रक्रिया में किया गया है, परिणाम को आवश्यक सार्थक अंकों तक व्यक्त करने के लिए संख्याओं के निकटतम (rounding off) में निम्नलिखित बातों का ध्यान रखना चाहिए -

  1. यदि सबसे दाईं ओर वाला अंक (जिसे हटाना हो) 5 से अधिक हो, तो उससे पहले वाले अंक का मान एक अधिक कर दिया जाता है। जैसे - यदि 1.386 में 6 को हटाना हो, तो हम निकटतम के पश्चात् 1.39 लिखेंगे।
  2. यदि सबसे दाईं ओर का हटाया जाने वाला अंक 5 से कम हो, तो उससे पहले वाले अंक को बदला नहीं जाएगा। जैसे- 4.334 में यदि अन्तिम 4 को हटाना हो, तो परिणाम को 4.33 के रूप में लिखा जाएगा।
  3. यदि सबसे दाईं ओर का हटाया जाने वाला अंक 5 हो, तो उससे पहला अंक सम होने की स्थिति में बदला नहीं जाएगा, परंतु विषम होने पर एक बढ़ा दिया जाता है। जैसे- यदि 6.35 को 5 हटाकर निकटतम करना हो, तो हमें 3 को बढ़ाकर 4 करना होगा और इस प्रकार परिणाम 6.4 व्यक्त किया जाएगा, परंतु यदि 6.25 का निकटतम करना हो, तो इसे 6.2 लिखा जाएगा।

1.4.3 विमीय विश्लेषण

परिकलन करते समय कभी-कभी हमें मात्रकों को एक पद्धति से दूसरी पद्धति में रूपांतरित करना पड़ता है। ऐसा करने के लिए गुणक लेबल विधि (factor label method), इकाई गुणक विधि (unit factor method) या विमीय विश्लेषण (dimensional analysis) का उपयोग किया जाता है। इसे नीचे उदाहरण से समझाया गया है।

1.5 रासायनिक संयोजन के नियम

तत्त्वों के संयोजन से यौगिकों का बनाना निम्नलिखित पाँच मूल नियमों के अंतर्गत होता है-

1.5.1 द्रव्यमान-संरक्षण का नियम

इस नियम के अनुसार द्रव्य न तो बनाया जा सकता है, और न ही नष्ट

किया जा सकता है।इस नियम को आंतोएन लावूसिए ने सन् 1789 में दिया था। उन्होंने दहन अभिक्रियाओं का प्रायोगिक अध्ययन ध्यान- पूर्वक किया और फिर ऊपर

आंतोएन लावूसिए

(1743-1794) दिए गए निष्कर्ष पर पहुँचे कि किसी भौतिक एवं रासायनिक परिवर्तन में कुल द्रव्यमान में कोई परिवर्तन नहीं होता। रसायन विज्ञान की बाद की कई संकल्पनाएँ इसी पर आधारित हैं। वास्तव में अभिकर्मकों और उत्पादों के द्रव्यमानों के यथार्थपरक मापनों और लावूसिए द्वारा प्रयोगों को ध्यानपूर्वक करने के कारण ऐसा संभव हुआ।

1.5.2 स्थिर अनुपात का नियम

यह नियम फ्रान्सीसी रसायनज्ञ जोसेफ प्राउस्ट ने दिया था। उनके अनुसार, किसी यौगिक में तत्त्वों के द्रव्यमानों का अनुपात सदैव समान होता है।प्राउस्ट ने क्यूप्रिक कार्बोनेट के दो नमूनों के साथ प्रयोग किया, जिनमें से

जोसेफ प्राउस्ट

(1754-1826) एक प्राकृतिक और दूसरा संश्लेषित था। उन्होंने पाया कि इन दोनों नमूनों में तत्त्वों का संघटन समान था, जैसा नीचे दिया गया है।

नमूना ताँबे का प्रतिशत कार्बन का प्रतिशत ऑक्सीजन का प्रतिशत
प्राकृतिक 51.35 9.74 38.91
संश्लेषित 51.35 9.74 38.91

अतः उन्होंने निष्कर्ष निकाला कि स्रोत पर निर्भर न करते हुए किसी यौगिक में उपस्थित तत्त्व के द्रव्यमान समान अनुपात में पाए जाते हैं। इस नियम को कई प्रयोगों द्वारा सत्यापित किया जा चुका है। इसे कभी-कभी ‘निश्चित संघटन का नियम’ भी कहा जाता है।

1.5.3 गुणित अनुपात का नियम

यह नियम डाल्टन द्वारा सन् 1803 में दिया गया। इस नियम के अनुसार, यदि दो तत्त्व संयोजित होकर एक से अधिक यौगिक बनाते हैं, तो एक तत्त्व के साथ दूसरे तत्त्व के संयुक्त होने वाले द्रव्यमान छोटे पूर्णांकों के अनुपात में होते हैं।

उदाहरण के लिए - हाइड्रोजन ऑक्सीजन के साथ संयुक्त होकर दो यौगिक (जल और हाइड्रोजन परऑक्साइड) बनाती है।

हाइड्रोजन + ऑक्सीजन जल
2 g 16 g 18 g
हाइड्रोजन + ऑक्सीजन हाइड्रोजन परऑक्साइड
2 g 32 g 34 g

यहाँ ऑक्सीजन के द्रव्यमान (अर्थात् 16 g और 32 g ), जो हाइड्रोजन के निश्चित द्रव्यमान (2 g) के साथ संयुक्त होते हैं, एक सरल अनुपात 16:32 या 1:2 में होते हैं।

1.5.4 गै-लुसैक का गैसीय आयतनों का नियम

यह नियम गै-लुसैक द्वारा सन् 1808 में दिया गया। उन्होंने पाया कि जब रासायनिक अभिक्रियाओं में गैसें संयुक्त होती हैं या बनती हैं, तो उनके आयतन सरल अनुपात में होते हैं, बशर्ते सभी गैसें समान ताप और दाब पर हों।

अतः हाइड्रोजन के 100 mL ऑक्सीजन के 50 mL के साथ संयुक्त होकर 100 mL जल-वाष्प देते हैं।

हाइड्रोजन

100 mL \begin{tabular}{c} ऑक्सीजन 50 mL

जल 100 mL \end{tabular}

अतः हाइड्रोजन और ऑक्सीजन के आयतन (जो आपस में संयुक्त, अर्थात् 100 mL और 50 mL होते हैं) आपस में सरल अनुपात 2:1 में होते हैं।

गै-लुसैक के आयतन संबंधों के पूर्णांक अनुपातों की खोज वास्तव में आयतन के संदर्भ में ‘स्थिर अनुपात का नियम’ है। पहले बताया गया स्थिर अनुपात का नियम द्रव्यमान के संदर्भ में है। गै-लुसैक के कार्य की परिपर्ण सन् 1811 में आवोगाद्रो के द्वारा की गई।

1.5.5 आवोगाद्रो का नियम

सन् 1811 में आवोगाद्रो ने प्रस्तावित किया कि समान ताप और दाब पर सभी गैसों के समान आयतनों में अणुओं की संख्या समान होनी चाहिए। आवोगाद्रो ने परमाणुओं और अणुओं के बीच अंतर की व्याख्या की, जो आज आसानी से समझ में आती है। यदि हम हाइड्रोजन और ऑक्सीजन

आवोगाद्रो

(1776-1856) की जल बनाने की अभिक्रिया को दुबारा देखें, तो यह कह सकते हैं कि हाइड्रोजन के दो आयतन और ऑक्सीजन का एक आयतन आपस में संयुक्त होकर जल के दो आयतन देते हैं और ऑक्सीजन लेशमात्र भी नहीं बचती है। चित्र 1.9 में ध्यान दीजिए कि प्रत्येक

चित्र 1.9 हाइड्रोजन के दो आयतन ऑक्सीजन के एक आयतन के साथ अभिक्रिया करके जल के दो आयतन बनाते हैं

डिब्बे में अणुओं की संख्या समान है। वास्तव में आवोगाद्रो ने इन परिणामों की व्याख्या अणुओं को बहुपरमाणुक मानकर की।

यदि हाइड्रोजन और ऑक्सीजन को द्वि-परमाणुक माना जाता जैसा अभी है, तो ऊपर दिए गए परिणामों को समझना काफी आसान है। परंतु उस समय डाल्टन और कई अन्य लोगों का यह मत था कि एक जैसे परमाणु आपस में संयुक्त नहीं हो सकते और हाइड्रोजन या ऑक्सीजन के दो परमाणुओं वाले अणु उपस्थित नहीं हो सकते। आवोगाद्रो का प्रस्ताव फ्रांसीसी में (Journal de Physique में) प्रकाशित हुआ। सही होने के बाद भी इस मत को बहुत बढ़ावा नहीं मिला।

लगभग 50 वर्षों के बाद (सन् 1860 में) जर्मनी (कार्ल्सरूह) में रसायन विज्ञान पर प्रथम अंतर्राष्ट्रीय सम्मेलन आहूत हुआ, ताकि कई मतों को सुलझाया जा सके। उसमें स्तेनिस्लाओ केनिज़ारो ने रसायन-दर्शन पर विचार प्रस्तुत करते समय आवोगाद्रो के कार्य के महत्त्व पर बल दिया।

1.6 डाल्टन का परमाणु सिद्धांत

हालाँकि द्रव्य के छोटे अविभाज्य कणों, जिन्हें एटोमोस (atomos) अर्थात् ‘अविभाज्य’ कहा जाता था, द्वारा बने होने के विचार की उत्पत्ति ग्रीक दर्शनशास्त्री डिमेक्रिट्स (460-370 BC) के समय हुई, परंतु कई प्रायोगिक अध्ययनों (जिन्होंने उपरोक्त नियमों को जन्म दिया) के फलस्वरूप इस पर फिर से विचार

जॉन डाल्टन

(1776-1884) किया जाने लगा।

सन् 1808 में डाल्टन ने रसायन-दर्शनशास्त्र की एक नई पद्धति (A New System of Chemical Philosophy) प्रकाशित की, जिसमें उन्होंने निम्नलिखित तथ्य प्रस्तावित किए-

(क) द्रव्य अविभाज्य परमाणुओं से बना है।

(ख) किसी दिए हुए तत्त्व के सभी परमाणुओं के एक समान द्रव्यमान सहित एक समान गुणधर्म होते हैं। विभिन्न तत्त्वों के परमाणु द्रव्यमान में भिन्न होते हैं।

(ग) एक से अधिक तत्त्वों के परमाणुओं के निश्चित अनुपात में संयोजन से यौगिक बनते हैं।

(घ) रासायनिक अभिक्रियाओं में परमाणु पुनर्व्यवस्थित होते हैं। रासायनिक अभिक्रियाओं में न तो उन्हें बनाया जा सकता है, न नष्ट किया जा सकता है।

डाल्टन के इस सिद्धांत से रासायनिक संयोजन के नियमों की व्याख्या की जा सकी। यद्यपि इससे गैसीय आयतनों के नियम की व्याख्या नहीं की जा सकी । यह परमाणुओं के संयोजन के कारण भी नहीं बता सका। जिसकी बाद में अन्य वैज्ञानिकों ने व्याख्या की।

1.7 परमाणु द्रव्यमान और आणिक द्रव्यमान

परमाणुओं और अणुओं से परिचित होने के पश्चात् अब यह समझना उचित होगा कि परमाणु द्रव्यमान और आण्विक द्रव्यमान से हम क्या समझते हैं।

1.7.1 परमाणु द्रव्यमान

परमाणु द्रव्यमान, अर्थात् किसी परमाणु का द्रव्यमान वास्तव में बहुत कम होता है, क्योंकि परमाणु अत्यंत छोटे होते हैं। आज सही-सही परमाणु द्रव्यमान ज्ञात करने की बेहतर तकनीकें (जैसे- द्रव्यमान स्पेक्ट्रममिति) हमारे पास उपलब्ध हैं। परंतु जैसा पहले बताया गया है, उन्नीसवीं शताब्दी में वैज्ञानिक एक परमाणु का द्रव्यमान दूसरे के सापेक्ष प्रायोगिक रूप से निर्धारित कर सकते थे। हाइड्रोजन परमाणु को सबसे हल्का होने के कारण स्वेच्छ रूप से 1 द्रव्यमान (बिना किसी मात्रक के) दिया गया और बाकी सभी तत्त्वों के परमाणुओं के द्रव्यमान उसके सापेक्ष दिए गए, परंतु परमाणु द्रव्यमानों की वर्तमान पद्धति कार्बन-12 मानक पर आधारित है। इसे सन् 1961 में स्वीकृत किया गया। यहाँ कार्बन-12 का एक समस्थानिक है, जिसे 12C से निरूपित किया जाता है इसे 12 परमाणु-द्रव्यमान मात्रक (atomic mass unit-amu) मान दिया गया है। बाकी सभी तत्त्वों के परमाणुओं के द्रव्यमान इसे मानक मानकर इसके सापेक्ष दिए जाते हैं। एक परमाणु द्रव्यमान मात्रक को एक कार्बन-12 परमाणु के द्रव्यमान के 112 वें भाग के रूप में परिभाषित किया जाता है। और 1amu=1.66056×1024 g हाइड्रोजन के एक परमाणु का द्रव्यमान

=1.6736×1024 g

अत: amu के पदों में हाइड्रोजन परमाणु का द्रव्यमान

=1.6736×1024 g1.66056×1024 g=1.0078u=1.0080u

इसी प्रकार, ऑक्सीजन 16(16O) परमाणु का द्रव्यमान 15.995amu होगा।

आजकल amu के स्थान पर u का प्रयोग किया जाता है, जिसे ‘एकीकृत द्रव्यमान’ (unified mass) कहा जाता है।

जब हम गणनाओं के लिए परमाणु द्रव्यमानों का प्रयोग करते हैं, तो वास्तव में हम औसत परमाणु द्रव्यमानों का उपयोग करते हैं, जिनका वर्णन नीचे किया जा रहा है।

1.7 .2 औसत परमाणु द्रव्यमान

प्रकृति में अनेक तत्त्व एक से अधिक समस्थानिकों के रूप में पाए जाते हैं। जब हम इन समस्थानिकों की उपस्थिति और उनकी आपेक्षिक बाहुल्यता (प्रतिशत-उपलब्धता) को ध्यान में रखते हैं, तो किसी तत्त्व का औसत परमाणु द्रव्यमान परिकलित किया जा सकता है। उदाहरण के लिए कार्बन के तीन समस्थानिक होते हैं, जिनकी आपेक्षिक बाहुल्यताएँ और द्रव्यमान इस सारणी में उनके सामने दर्शाए गए हैं -

समस्थानिक आपेक्षिक बाहुल्यत ( परमाणु द्रव्यमान (u)
12C 98.892 12
13C 1.108 13.00335
14C 2×1010 14.00317

ऊपर दिए गए आँकड़ों से कार्बन का औसत परमाणु द्रव्यमान इस प्रकार प्राप्त होगाऔसत परमाणु द्रव्यमान

=(0.98892)(12u)+(0.01108)×(13.00335u)+(2×1010)(14.003.17u)=12.011u

इसी प्रकार, अन्य तत्त्वों के लिए भी औसत परमाणु द्रव्यमान परिकलित किए जा सकते हैं। तत्त्वों की आवर्त सारणी में विभिन्न तत्त्वों के लिए दिए गए परमाणु द्रव्यमान उन तत्त्वों के औसत परमाणु द्रव्यमान होते हैं।

1.7.3 आण्विक द्रव्यमान

किसी अणु का आण्विक द्रव्यमान उसमें उपस्थित विभिन्न तत्त्वों के परमाणु द्रव्यमानों का योग होता है। इसे प्रत्येक तत्त्व के परमाणु द्रव्यमान और उपस्थित परमाणुओं की संख्या के गुणनफलों के योग द्वारा प्राप्त किया जा सकता है। उदाहरण के लिए - मेथेन (जिसमें एक कार्बन परमाणु और चार हाइड्रोजन परमाणु उपस्थित होते हैं) का आण्विक द्रव्यमान इस प्रकार प्राप्त किया जा सकता है-

मेथैन (CH4) का आण्विक द्रव्यमान

=(12.011u)+4(1.008u)=16.043u

इसी प्रकार, जल (H2O) का आण्विक द्रव्यमान =

2× हाइड्रोजन का परमाणु द्रव्यमान +1× ऑक्सीजन का परमाणु द्रव्यमान

=2(1.008u)+16u=18.02u

1.7.4 सूत्र-द्रव्यमान

कुछ पदार्थों (जैसे - सोडियम क्लोराइड) में उनकी घटक इकाइयों के रूप में अणु अलग से उपस्थित नहीं होते। ऐसे यौगिकों में धनात्मक (सोडियम आयन) और ऋणात्मक (क्लोराइड आयन) कण त्रिविमीय संरचना चित्र 1.10 के अनुसार व्यवस्थित रहते हैं। यह ध्यान देने योग्य है कि सोडियम क्लोराइड में एक सोडियम आयन छः क्लोराइड आयनों से घिरा रहता है और एक क्लोराइड आयन भी छः सोडियम आयनों से घिरा रहता है।

चित्र 1.10 सोडियम क्लोराइड में Na+और Clआयनों की व्यवस्था

इस प्रकार, सूत्र (जैसे NaCl ) का प्रयोग सूत्र-द्रव्यमान परिकलित करने के लिए किया जाता है, न कि आण्विक द्रव्यमान के परिकलन के लिए, क्योंकि ठोस अवस्था में सोडियम क्लोराइड में अणु उपस्थित ही नहीं होते। अत: सोडियम क्लोराइड का सूत्र द्रव्यमान = सोडियम का परमाणु द्रव्यमान + क्लोरीन का परमाणु द्रव्यमान

=23.0u+35.5u=58.5u

1.8 मोल-संकल्पना और मोलर द्रव्यमान

परमाणु और अणु आकार में अत्यंत छोटे होते हैं, परंतु किसी पदार्थ की बहुत कम मात्रा में भी उनकी संख्या बहुत अधिक होती है। इतनी बड़ी संख्याओं के साथ काम करने के लिए सुविधाजनक परिमाण के एक मात्रक की आवश्यकता होती है।

जिस प्रकार हम 12 वस्तुओं के लिए ‘एक दर्जन’, 20 वस्तुओं के लिए ‘एक स्कोर’ (Score, समंक) और 144 वस्तुओं के लिए ‘एक ग्रोस’ (gross) का प्रयोग करते हैं, उसी प्रकार अतिसूक्ष्म स्तर पर कणों (जैसे- परमाणुओं, अणुओं, कणों, इलेक्ट्रॉनों आदि) को गिनने के लिए मोल का उपयोग किया जाता है।

SI मात्रकों में मोल (संकेत- mol ) को किसी पदार्थ की मात्रा व्यक्त करने के लिए सात आधार राशियों में सम्मिलित किया गया था।

मोल (mole) जिसका संकेत मोल (mol) है, पदार्थ की मात्रा का SI मात्रक है। एक मोल में ठीक 6.02214076×1023 ही मूलभूत कण होते हैं। यह संख्या, आवोगाद्रो स्थिरांक, NA का नियत संख्यात्मक मान होता है जब उसे mol1 मात्रक में व्यक्त किया जाता है और इसे आवोगाद्रो संख्या कहा जाता है। किसी निकाय के पदार्थ की मात्रा, संकेत n, विशिष्ट मूल कणों की संख्या का आमाप होती है। ये मूल कण एक परमाणु, अणु, आयन, इलेक्ट्रॉन, कोई अन्य कण या कणों का विशिष्ट समूह हो सकते हैं। यहाँ यह ध्यान देने की बात है कि किसी पदार्थ के एक मोल में कणों की संख्या सदैव समान होगी, भले ही वह कोई भी पदार्थ हो। इस संख्या के सही निर्धारण के लिए कार्बन -12 परमाणु का द्रव्यमान, द्रव्यमान स्पेक्ट्रममापी द्वारा ज्ञात किया गया, जिसका मान 1.992648×1023 g प्राप्त हुआ। कार्बन के 1 मोल का द्रव्यमान 12 g होता है, अतः कार्बन के 1 मोल में परमाणुओं की संख्या इस प्रकार होगी -

12 g/mol12C1.992648×1023 g/12C परमाणु =6.0221367×1023 परमाणु प्रति मोल 

1 मोल में कणों की संख्या इतनी महत्त्वपूर्ण है कि इसे एक अलग नाम और संकेत दिया गया, जिसे (आमीदियो आवोगाद्रो के सम्मान में) ‘आवोगाद्रो स्थिरांक’ अथवा ‘आवोगाद्रो संख्या’ कहते हैं और NA से व्यक्त करते हैं।

इस संख्या के बड़े परिमाण को अनुभव करने के लिए इसे दस की घात का उपयोग किए बिना आने वाले सभी शून्यों के साथ इस प्रकार लिखें -

602213670000000000000000 अतः किसी पदार्थ के 1 मोल में दी गई पूर्वोक्त संख्या के बराबर कण (परमाणु, अणु या कोई अन्य कण) होंगे। अतः हम यह कह सकते हैं कि

1 मोल हाइड्रोजन परमाणु =6.022×1023 हाइड्रोजन परमाणु

1 मोल जल-अणु =6.022×1023 जल-अणु

1 मोल सोडियम क्लोराइड = सोडियम क्लोराइड की

6.022×1023 सूत्र इकाइयाँ

चित्र 1.11 में विभिन्न पदार्थों के 1 मोल को दर्शाया गया है।

चित्र 1.11 विभिन्न पदार्थों का एक मोल

मोल को परिभाषित करने के बाद किसी पदार्थ या उसके घटकों के एक मोल के द्रव्यमान को आसानी से ज्ञात किया जा सकता है। किसी पदार्थ के एक मोल के ग्राम में व्यक्त द्रव्यमान को उसका ‘मोलर द्रव्यमान’ कहते हैं।

ग्राम में व्यक्त मोलर द्रव्यमान संख्यात्मक रूप से परमाणु द्रव्यमान/आण्विक द्रव्यमान/सूत्र द्रव्यमान के बराबर होता है। अतः जल का मोलर द्रव्यमान =18.02 g mol1

सोडियम क्लोराइड का मोलर द्रव्यमान =58.5 g mol1

1.9 प्रतिशत-संघटन

अभी तक हम किसी नमूने में उपस्थित कणों की संख्या के बारे में चर्चा कर रहे थे, परंतु कई बार किसी यौगिक में किसी विशेष तत्त्व के प्रतिशत की जानकारी की आवश्यकता होती है। मान लीजिए कि आपको कोई अज्ञात या नया यौगिक दिया गया है। आप पहले यह प्रश्न पूछेंगे कि इसका सूत्र क्या है या इसके घटक कौन-कौन से हैं और वे किस अनुपात में उपस्थित हैं? ज्ञात यौगिकों के लिए भी इस जानकारी से यह पता लगाने में सहायता मिलती है कि क्या दिए गए नमूने में तत्त्वों का वही प्रतिशत है, जो शुद्ध नमूने में होना चाहिए। दूसरे शब्दों में- इन आँकड़ों के विश्लेषण से यह जानने में सहायता मिलती है कि दिया गया नमूना शुद्ध है या नहीं।

आइए, जल (H2O) का उदाहरण लेकर इसे समझें। चूँकि जल में हाइड्रोजन और ऑक्सीजन उपस्थित होती हैं, अतः इन तत्त्वों का प्रतिशत-संघटन इस प्रकार परिकलित किया जा सकता हैकिसी तत्त्व का द्रव्यमान प्रतिशत

= यौगिक में उस तत्त्व का द्रव्यमान ×100 यौगिक का मोलर द्रव्यमान 

 जल का मोलर द्रव्यमान =18.02 g

हाइड्रोजन का द्रव्यमान प्रतिशत =2×1.00818.02×100

=11.18

ऑक्सीजन का द्रव्यमान प्रतिशत =16.0018.02×100

=88.79

आइए, एक और उदाहरण लें। एथेनॉल में कार्बन, हाइड्रोजन और ऑक्सीजन का द्रव्यमान प्रतिशत कितना है?

एथेनॉल का आण्विक सूत्र =C2H5OH

एथेनॉल का मोलर द्रव्यमान =(2×12.01+

6×1.008+16.00)g=46.068 g

कार्बन का द्रव्यमान प्रतिशत =24.02 g46.068×100=52.14

हाइड्रोजन का द्रव्यमान प्रतिशत

=6.048g46.068g×100=13.13

ऑक्सीजन का द्रव्यमान प्रतिशत

=15.9994 g46.068 g×100=34.728

द्रव्यमान-प्रतिशत के परिकलनों को समझने के बाद अब हम यह देखें कि प्रतिशत-संघटन आँकड़ों से क्या जानकारी प्राप्त की जा सकती है।

1.9.1 मूलानुपाती सूत्र और आण्विक सूत्र

मूलानुपाती सूत्र किसी यौगिक में उपस्थित विभिन्न परमाणुओं के सरलतम पूर्ण संख्या-अनुपात को व्यक्त करता है, जबकि आण्विक सूत्र किसी यौगिक के अणु में उपस्थित विभिन्न प्रकार के परमाणुओं की सही संख्या को दर्शाता है।

यदि किसी यौगिक में उपस्थित सभी तत्त्वों का द्रव्यमानप्रतिशत ज्ञात हो, तो उसका मूलानुपाती सूत्र निर्धारित किया जा सकता है। यदि मोलर द्रव्यमान ज्ञात हो, तो मूलानुपाती सूत्र से आण्विक सूत्र ज्ञात किया जा सकता है। इन चरणों को उदाहरण 1.2 में द्वारा दर्शाया गया है-

1.10 स्टॉइकियोमीट्री और स्टॉइकियोमीट्रिक परिकलन

‘स्टॉइकियोमीट्री’ शब्द दो ग्रीक शब्दों - ‘स्टॉकियोन’ (stoicheion), जिसका अर्थ ‘तत्त्व’ है और मेट्रोन (metron), जिसका अर्थ ‘मापना’ है, से मिलकर बना है। अतः ‘स्टॉइकियोमीट्री’ के अंतर्गत रासायनिक अभिक्रिया में अभिक्रियकों और उत्पादों के द्रव्यमानों (या कभी-कभी आयतनों) का परिकलन आता है। यह समझने से पहले कि किसी रासायनिक अभिक्रिया में किसी अभिक्रियक की कितनी मात्रा की आवश्यकता होगी या कितना उत्पाद प्राप्त होगा, यह जान लें कि किसी दी गई रासायनिक अभिक्रिया के संतुलित रासायनिक समीकरण से क्या जानकारी प्राप्त होती है। आइए, मेथेन के दहन पर विचार करें। इस अभिक्रिया के लिए संतुलित समीकरण इस प्रकार है -

CH4( g)+2O2( g)CO2( g)+2H2O(g)

यहाँ मेथेन और डाइऑक्सीजन को ‘अभिक्रियक’ या अभिकारक कहा जाता है और कार्बन डाइऑक्साइड तथा जल को ‘उत्पाद’ कहते हैं। ध्यान दीजिए कि ऊपरोक्त अभिक्रिया में सभी अभिक्रियक और उत्पाद गैसें हैं और इसे उनके सूत्रों के बाद कोष्ठक में g अक्षर को लिखकर व्यक्त किया जाता है। इसी प्रकार, ठोसों और द्रवों के लिए क्रमशः (s) और (1) लिखे जाते हैं। O2 और H2O के लिए गुणांक 2 को ‘स्टॉइकियोमीट्रिक गुणांक’ कहा जाता है। इसी प्रकार CH4 और CO2 दोनों के लिए यह गुणांक 1 है। ये गुणांक अभिक्रिया में भाग ले रहे या बनने वाले अणुओं की संख्या (या मोलों की संख्या) को व्यक्त करते हैं।

 अतः ऊपर दी गई अभिक्रिया के अनुसार 

  • CH4( g) का एक मोल O2( g) के 2 मोलों के साथ अभिक्रिया करके एक मोल CO2( g) और 2 मोल H2O(g) देता है।

  • CH4( g) का एक अणु O2( g) अणु के दो अणुओं के साथ अभिक्रिया करके CO2( g) का एक अणु और H2O(g) के दो अणु देता है।

  • 22.7 LCH4( g),45.4 LO2( g) के साथ अभिक्रिया द्वारा 22.7 LCO2( g) और 45.4 LH2O(g) देती है।

  • 16gCH4( g),2×32 gO2 (g) के साथ अभिक्रिया करके 44 gCO2( g) और 2×18 gH2O(g) देती है। इन संबंधों के आधार पर दिए गए आँकड़ों को एक-दूसरे में इस प्रकार परिवर्तित किया जा सकता है द्रव्यमान मोलों की संख्या अणु की संख्या  द्रव्यमान  आयतन = घनत्व

1.10.1 सीमांत अभिकर्मक

कई बार अभिक्रियाओं में संतुलित समीकरण के अनुसार आवश्यक अभिक्रियकों की मात्राएँ उपस्थित नहीं होतीं। ऐसी स्थितियों में एक अभिक्रियक दूसरे की अपेक्षा अधिकता में उपस्थित होता है। जो अभिक्रियक कम मात्रा में उपस्थित होता है, वह कुछ देर बाद समाप्त हो जाता है। उसके बाद और आगे अभिक्रिया नहीं होती, भले ही दूसरे अभिक्रियक की कितनी ही मात्रा उपस्थित हो। अतः जो अभिक्रियक पहले समाप्त होता है, वह उत्पाद की मात्रा को सीमित कर देता है। इसलिए उसे ‘सीमांत अभिकर्मक’ (limiting reagent) कहते हैं। स्टॉइकियोमीट्रिक गणनाएं करते समय यह बात ध्यान में रखनी चाहिए ।

रासायनिक समीकरण संतुलित करना

द्रव्यमान संरक्षण के नियमानुसार, संतुलित रासायनिक समीकरण के दोनों ओर प्रत्येक तत्त्व के परमाणुओं की संख्या समान होती है। कई रासायनिक समीकरण ‘जाँच और भूल-पद्धति से संतुलित किए जा सकते हैं। आइए, हम कुछ धातुओं और अधातुओं का संयोग कर ऑक्सीजन के साथ ऑक्साइड उत्पन्न करने की अभिक्रियाओं पर विचार करें - 4Fe(s)+3O2( g)2Fe2O3( s) (क) संतुलित समीकरण 2Mg(s)+O2( g)2MgO(s) (ख) संतुलित समीकरण P4( s)+O2( g)P4O10( s) (ग) असंतुलित समीकरण

समीकरण (क) और (ख) संतुलित हैं, क्योंकि समीकरणों में तीर के दोनों ओर संबंधित धातु और ऑक्सीजन के परमाणुओं की संख्या समान है, परंतु समीकरण (ग) संतुलित नहीं है, क्योंकि इसमें फॉस्फोरस के परमाणु तो संतुलित हैं, परंतु ऑक्सीजन के परमाणुओं की संख्या तीर के दोनों ओर समान नहीं है। इसे संतुलित करने के लिए समीकरण में बाईं ओर ऑक्सीजन के पूर्व में 5 से गुणा करने पर ही समीकरण की दाईं ओर ऑक्सीजन के परमाणुओं की संख्या संतुलित होगी -

P4( s)+5O2( g)P4O10( s) संतुलित समीकरण

आइए, अब हम प्रोपेन, C3H8 के दहन पर विचार करें। इस समीकरण को निम्नलिखित पदों में संतुलित किया जा सकता है -

पद 1. अभिक्रियकों और उत्पादों के सही सूत्र लिखिए। यहाँ प्रोपेन एवं ऑक्सीजन अभिक्रियक हैं और कार्बन डाइऑक्साइड तथा जल उत्पाद हैं :

C3H8( g)+O2( g)CO2( g)+H2O(l) असंतुलित समीकरण

पद 2. C परमाणुओं की संख्या संतुलित करें : चूँकि अभिक्रियक में तीन C परमाणु हैं, इसलिए दाईं ओर तीन CO2 अणुओं का होना आवश्यक है।

C3H8( g)+O2( g)3CO2( g)+H2O(l)

पद 3. H परमाणुओं की संख्या संतुलित करें : बाईं ओर अभिक्रियकों में आठ H परमाणु है, जल के हर अणु में दो H परमाणु हैं। इसलिए दाईं ओर H के 8 परमाणुओं के लिए जल के चार अणु होने चाहिए -

C3H8( g)+O2( g)3CO2( g)+4H2O(l)

पद 4. O परमाणुओं की संख्या संतुलित करें : दाईं ओर दस ऑक्सीजन परमाणु (3×2=6,CO2 में तथा 4×1=4 जल में) अतः दस ऑक्सीजन परमाणुओं के लिए पाँच O2 अणुओं की आवश्यकता होगी।

C3H8( g)+5O2( g)3CO2( g)+4H2O(l)

पद 5. जाँच करें कि अंतिम समीकरणों में प्रत्येक तत्त्व के परमाणुओं की संख्या संतुलित है : समीकरण में दोनों ओर 3 कार्बन परमाणु, 8 हाइड्रोजन परमाणु और 10 ऑक्सीजन परमाणु हैं।

ऐसे सभी समीकरणों, जिनमें सभी अभिक्रियकों तथा उत्पादों के लिए सही सूत्रों का उपयोग हुआ हो, संतुलित किया जा सकता है। हमेशा ध्यान रखें कि समीकरण संतुलित करने के लिए अभिक्रियकों और उत्पादों के सूत्रों में पादांक (subscript) नहीं बदले जा सकते।

1.10.2 विलयनों में अभिक्रियाएँ

प्रयोगशाला में अधिकांश अभिक्रियाएँ विलयनों में की जाती हैं। अत: यह जानना महत्त्वपूर्ण होगा कि जब कोई पदार्थ विलयन के रूप में उपस्थित होता है, तब उसकी मात्रा किस प्रकार व्यक्त की जाती है। किसी विलयन की सांद्रता या उसके दिए गए आयतन में उपस्थित पदार्थ की मात्रा निम्नलिखित रूप में व्यक्त की जा सकती है -

  1. द्रव्यमान - प्रतिशत या भार-प्रतिशत ( w/w
  2. मोल-अंश
  3. मोलरता
  4. मोललता आइए, अब इनके बारे में विस्तार से जानें।

1. द्रव्यमान-प्रतिशत

इसे निम्नलिखित संबंध द्वारा ज्ञात किया जाता है-

 विलेय का द्रव्यमान  विलयन का द्रव्यमान ×100

  1. मोल-अंश

यह किसी विशेष घटक के मोलों की संख्या और विलयन के मोलों की कुल संख्या की अनुपात होता है। यदि कोई पदार्थ A किसी पदार्थ B में घुलता है और उनके मोलों की

संख्या क्रमश : nA और nB हो, तो उनके मोल अंश इस प्रकार व्यक्त किए जाएँगे -

A का मोल-अंश

=A के मोलों की संख्या  विलयन के मोलों की संख्या =nAnA+nB

B का मोल-अंश

=B के मोलों की संख्या  विलयन के मोलों की संख्या =nBnA+nB

3. मोलरता

यह सबसे अधिक प्रयुक्त मात्रक है। इसे M द्वारा व्यक्त किया जाता है। यह किसी विलेय की 1 L विलयन में उपस्थित मोलों की संख्या होती है। अत:

मोलरता (M)= विलयन के मोलों की संख्या  विलयन का आयतन (L में) 

मान लीजिए कि हमारे पास किसी पदार्थ (जैसे NaOH) का 1M विलयन है और हम उससे 0.2M वाला विलयन प्राप्त करना चाहते हैं।

1MNaOH का अर्थ है कि विलयन के 1 L में 1 मोल NaOH उपस्थित है। 0.2M विलयन के लिए हमें IL विलयन में 0.2 मोल NaOH की आवश्यकता होगी। अत: NaOH के 1M विलयन से NaOH का 0.2M विलयन बनाने के लिए हमें 1MNaOH विलयन का वह आयतन लेना होगा जिसमें 0.2MNaOH उपस्थित हो और इसे जल द्वारा तनुकरण करके 1 L विलयन बनाना होगा। अब सांद्र 1MNaOH का कितना आयतन लिया जाए, जिसमें 0.2 मोल NaOH उपस्थित हो, इसका परिकलन अग्रलिखित रूप में किया जा सकता है - यदि 1 L या 1000 mL आयतन में 1 मोल उपस्थित है, तब 0.2 मोल उपस्थित होगा-

1000 mL1 मोल ×0.2 मोल =200 mL आयतन में

अतः 1MNaOH के 200 mL लेकर उसमें उतना जल मिलाया जाता है, ताकि आयतन 1 L के बराबर हो जाए।

ऐसी गणनाओं में सामान्य सूत्र M1×V1=M2×V2 का भी प्रयोग किया जाता है, जहाँ M तथा V क्रमशः मोलरता तथा आयतन हैं। यहाँ M1=0.2;V1=1000 mL तथा M2=1.0; इन सभी मानों को सूत्र में रखकर V2 को इस प्रकार ज्ञात किया जा सकता है-

0.2M×1000 mL=1.0M×V2V2=0.2M×1000 mL1.0M=200 mL

ध्यान दीजिए कि 200 mL में घुले (NaOH) के मोलों की संख्या 0.2 थी और यह तनु करने पर (1000 mL) में भी उतनी ही, अर्थात् (0.2) रही है, क्योंकि हमने केवल विलायक (जल) की मात्रा परिवर्तित की है, न कि NaOH की। लेकिन विलयन की सांद्रता कम हो गई है।

4. मोललता

इसे 1 kg विलायक में उपस्थित विलेय के मोलों की संख्या के रूप में परिभाषित किया जाता है। इसे m द्वारा व्यक्त किया जाता है।

 अत: मोललता (m)= विलेय के मोलों की संख्या  विलायक का द्रव्यमान kg में 

सारांश

रसायन विज्ञान का अध्ययन बहुत महत्त्वपूर्ण है, क्योंकि यह जीवन के सभी पहलुओं को प्रभावित करता है। रसायनज्ञ पदार्थों की संरचना, गुणधर्मों और परिवर्तनों के बारे में अध्ययन करते हैं। सभी पदार्थ द्रव्य द्वारा बने होते हैं। वे तीन भौतिक अवस्थाओं-ठोस, द्रव और गैस के रूप में पाए जाते हैं। इन तीनों अवस्थाओं में घटक-कणों की व्यवस्था भिन्न होती है। इन अवस्थाओं के अभिलाक्षणिक गुणधर्म होते हैं। द्रव्य को तत्त्वों, यौगिकों और मिश्रणों के रूप में भी वर्गीकृत किया जा सकता है। किसी तत्त्व में एक ही प्रकार के कण होते हैं, जो परमाणु या अणु हो सकते हैं। जब दो या अधिक तत्त्वों के परमाणु निश्चित अनुपात में संयुक्त होते हैं, तो यौगिक प्राप्त होते हैं। मिश्रण प्रचुर मात्रा में पाए जाते हैं और हमारे आसपास उपस्थित अनेक पदार्थ मिश्रण हैं।

जब किसी पदार्थ के गुणधर्मों का अध्ययन किया जाता है, तब मापन आवश्यक हो जाता है। गुणधर्मों को मात्रात्मकतः व्यक्त करने के लिए मापन की पद्धति और मात्रकों की आवश्यकता होती है, जिनमें राशियों को व्यक्त किया जा सके। मापन की कई पद्धतियाँ हैं, जिनमें अंग्रेज़ी पद्धति और मीटरी पद्धति का उपयोग विस्तार में किया जाता है। परंतु वैज्ञानिकों ने पूरे विश्व में एक जैसी पद्धति जिसे, ‘SI पद्धति’ कहते हैं, का सर्वमान्य प्रयोग करने की सहमति बनाई।

चूँकि मापनों में आँकड़ों को रिकॉर्ड करना पड़ता है और इसमें सदैव कुछ न कुछ अनिश्चितता बनी रहती है, इसलिए आँकड़ों का प्रयोग ठीक से करना बहुत महत्त्वपूर्ण है। रसायन विज्ञान में राशियों के मापन में 1031 से 1023 जैसी संख्याएँ आती हैं। इसलिए इन्हें व्यक्त करने के लिए वैज्ञानिक संकेतन का उपयोग किया जाता है। प्रेक्षणों में सार्थक अंकों की संख्या को बताकर अनिश्चितता का ध्यान रखा जा सकता है। विमीय विश्लेषण से मापी गई राशियों को मात्रकों की एक पद्धति से दूसरी पद्धति में परिवर्तित किया जा सकता है। अतः परिणामों को एक पद्धति के मात्रकों से दूसरी पद्धति के मात्रकों में परिवर्तित किया जा सकता है।

विभिन्न परमाणुओं का संयोजन रासायनिक संयोजन के नियमों के अनुसार होता है। ये नियम हैं - द्रव्यमान संरक्षण का नियम, स्थिर अनुपात का नियम, गुणित अनुपात का नियम, गै-लुसैक का गैसीय आयतनों का नियम और आवोगाद्रो का नियम। इन सभी नियमों के परिणामस्वरूप ‘डॉल्टन का परमाणु सिद्धांत’ प्रस्तुत हुआ, जिसके अनुसार परमाणु द्रव्य के रचनात्मक खंड होते हैं। किसी तत्त्व का परमाणु द्रव्यमान कार्बन के 12C समस्थानिक (जिसे ठीक 12u मान लिया गया है) के सापेक्ष व्यक्त किया जाता है। आमतौर पर किसी तत्त्व के लिए प्रयोग किया जाने वाला परमाणु द्रव्यमान वह परमाणु द्रव्यमान होता है, जिसे सभी समस्थानिकों का प्राकृतिक बाहुल्यताओं को ध्यान में रखकर प्राप्त किया जा सकता है। किसी अणु में उपस्थित विभिन्न परमाणुओं के परमाणु-द्रव्यमानों के योग द्वारा आण्विक द्रव्यमान ज्ञात किया जा सकता है। किसी यौगिक का अणु-सूत्र इसमें उपस्थित विभिन्न तत्त्वों के द्रव्यमान-प्रतिशत को और आण्विक द्रव्यमान को निर्धारित करके परिकलित किया जा सकता है।

किसी निकाय में उपस्थित परमाणुओं, अणुओं या अन्य कणों की संख्या को आवोगाद्रो स्थिरांक (6.022×1023) के रूप में व्यक्त किया जा सकता है। इस संख्या को इन कणों का ’ 1 मोल’ कहा जाता है।

विभिन्न तत्त्वों और यौगिकों के रासायनिक परिवर्तनों को रासायनिक अभिक्रियाओं के रूप में व्यक्त किया जाता है। एक संतुलित रासायनिक समीकरण से काफी जानकारी प्राप्त होती है। किसी विशेष अभिक्रिया में भाग ले रहे मोलों के अनुपात और कणों की संख्या अभिक्रिया के समीकरण के गुणकों से प्राप्त की जा सकती है। आवश्यक अभिक्रियकों और बने उत्पादों का मात्रात्मक अध्ययन ‘स्टॉइकियोमीट्री’ कहलाता है। स्टॉइकियोमीट्रिक परिकलनों से किसी उत्पाद की विशिष्ट मात्रा को प्राप्त करने के लिए आवश्यक अभिक्रियकों की मात्रा या इसके विपरीत निर्धारित किया जा सकता है। दिए गए विलयन के आयतन में उपस्थित पदार्थ की मात्रा को विभिन्न प्रकार से प्रदर्शित किया जाता है। उदाहरणार्थ - द्रव्यमान प्रतिशत, मोल-अंश, मोलरता तथा मोललता।



विषयसूची