मात्रिका अभ्यास 03

प्रश्न:

पता करें 1/2(A+ A T ) और 1/2(A− A T ), जब A=[0ab-a0c-b-c0]

उत्तर:

  1. AT पता करें:

AT = [0-a-ba0cb-c0]

  1. 1/2(A + AT) पता करें:

1/2(A + AT) = [0000ac0c0]

  1. 1/2(A - AT) पता करें:

1/2(A - AT) = [0ab-a0-c-bc0]

प्रश्न:

जवाब: (i) A+B = [-53-2699-142]

(A+B)T = [-56-1394-292]

AT = [-15-2271391]

BT = [-411123-501]

AT + BT = [-56-1394-292]

([cosαsinα-sinαcosα])([cosαsinα-sinαcosα])=[1001]

(ii) A’A =

निम्नलिखित प्रत्यूह के प्रतिलोम को ढूंढें: (i) [51/2-1] (ii) [1-123] (iii) [-156√35623-1]

उत्तर:

(i) [51/2-1]

(ii) [12-13]

(iii) [-1√3255366-1]

B=[-121]

To verify that (AB)′=B′A′, first compute AB:

AB=[1-43][-121]=[-11011]

Taking the transpose of AB:

(AB)′=[-11011]

Now compute B′A′:

B′=[-121]

A′=[1-43]

B′A′=[-11011]

Therefore, (AB)′=B′A′ is verified.

(ii) A=[012], B=[157]

To verify that (AB)′=B′A′, first compute AB:

AB=[01205701014][157]=[203448]

Taking the transpose of AB:

(AB)′=[203448]

Now compute B′A′:

B′=[157]

A′=[012]

B′A′=[203448]

Therefore, (AB)′=B′A′ is verified.

देखें, (A+A′) = [2111114], which is equal to its transpose. So, (A+A′) is a symmetric matrix.

(ii) To verify that (A−A′) is a skew symmetric matrix, we need to show that its transpose is equal to the negation of itself.

(A−A′) = [0-110]

Transposing (A−A′) gives us [01-10]

We can see that this is equal to the negation of (A−A′), so (A−A′) is a skew symmetric matrix.

अगर A, B एक ही क्रम के symmetric मैट्रिक्स हैं, तो AB−BA का उत्तर एक शून्य प्रतिष्ठान है।

उत्तर: C शून्य प्रतिष्ठान मैट्रिक्स

प्रश्न:

निम्नलिखित मैट्रिक्स को एक symmetric और एक skew symmetric मैट्रिक्स के रूप में व्यक्त करें: (i) [ 3 5 1 -1 ] (ii) [ 6 -2 2 -2 3 -1 2 -1 3 ] (iii) [ 3 3 -1 -2 -2 1 -4 -5 2 ] (iv) [ 1 5 -1 2 ]

उत्तर:

The given matrix A is:

[1 -1 5]
[-1 2 1]
[5 1 3]

Let’s find the transpose of matrix A:

AT =

[1 -1 5]
[-1 2 1]
[5 1 3]

Since A = AT, the matrix A is symmetric.

(ii) A matrix A is skew symmetric if A = -AT, where AT is the transpose of A.

The given matrix A is:

[0 1 -1]
[-1 0 1]
[1 -1 0]

Let’s find the transpose of matrix A:

AT =

[0 -1 1]
[1 0 -1]
[-1 1 0]

Then, -AT =

[0 1 -1]
[-1 0 1]
[1 -1 0]

Since A = -AT, the matrix A is skew symmetric.

इसलिए, (A+B)′ = A′+B′ होता है।

(ii) To verify that (A−B)′=A′−B′, we need to calculate (A−B)′ and A′−B′ separately and then compare them.

(A−B)′ = [42-2-20-21-3-3]

A′−B′ = [42-2-20-21-3-3]

इसलिए, (A−B)′ = A′−B′ होता है।

Since (A+B)′=A′+B′, हम यह निष्कर्ष निकाल सकते हैं कि (i) सत्य है।

(ii) (A−B)′=A′−B′ की पुष्टि करने के लिए, हमें (A−B)′ और A′−B′ को अलग-अलग कैलकुलेट करके उन्हें तुलना करनी होगी।

(A−B)′ = [42-1-10-21-12]

A′−B′ = [42-1-10-21-12]

Since (A−B)′=A′−B′, हम यह निष्कर्ष निकाल सकते हैं कि (ii) सत्य है।

प्रश्न:

यदि A′=[-2312] और B=[-1012] हैं, तो (A+2B)′ की प्राप्त करें।

उत्तर:

चरण 1: A और 2B जोड़ें ताकि (A + 2B) प्राप्त करें A + 2B = [-3636]

चरण 2: (A + 2B) का प्रतिस्थापन पाएं (A + 2B)′ = [-3366]



विषयसूची