What are Nucleoid
graph TD;
A[Nucleoid]
A --> B[Definition]
B --> C[Region within the cell of a prokaryote that contains all or most of the genetic material]
A --> D[Characteristics]
D --> E1[Not bounded by a membrane]
D --> E2[Usually not a distinct structure]
D --> E3[Visible only during replication]
A --> F[Function]
F --> G1[Contains the chromosome and numerous proteins]
F --> G2[Involved in the control of cell division and other activities]
What are the differences between positive and negative super coilings
graph TB
A["Super Coiling"] --> B["Positive Super Coiling"]
A --> C["Negative Super Coiling"]
B --> D["Characteristic 1 of Positive Super Coiling"]
B --> E["Characteristic 2 of Positive Super Coiling"]
C --> F["Characteristic 1 of Negative Super Coiling"]
C --> G["Characteristic 2 of Negative Super Coiling"]
Why DNA packaging is needed
graph TB
A["Why DNA Packaging is Needed"]
A --> B["Protects DNA"]
B --> C["From Damage"]
B --> D["From Mutations"]
A --> E["Organizes DNA"]
E --> F["Improves Cell Function"]
E --> G["Facilitates DNA Replication"]
A --> H["Regulates Gene Expression"]
H --> I["Turns Genes On/Off"]
H --> J["Controls Cell Differentiation"]
What are the different protiens involved in Nucleosome Model
graph TB
A[Nucleosome Model]
A --> B[Protein 1]
A --> C[Protein 2]
A --> D[Protein 3]
B --> E[Sub-protein 1.1]
B --> F[Sub-protein 1.2]
C --> G[Sub-protein 2.1]
C --> H[Sub-protein 2.2]
D --> I[Sub-protein 3.1]
D --> J[Sub-protein 3.2]
What are the different types of chromosome depending on thier centromere position
graph TD;
A[Chromosomes] -- Centromere Position --> B[Types];
B -- Telocentric --> BA[Telocentric Chromosome];
B -- Acrocentric --> BB[Acrocentric Chromosome];
B -- Submetacentric --> BC[Submetacentric Chromosome];
B -- Metacentric --> BD[Metacentric Chromosome];
Search of Genetic material
graph TB
A[Search of Genetic Material]
A --> B[DNA]
A --> C[RNA]
B --> D[Structure of DNA]
B --> E[Function of DNA]
C --> F[Structure of RNA]
C --> G[Function of RNA]
D --> H[Double Helix]
D --> I[Nucleotides]
E --> J[Genetic Code]
E --> K[Replication]
F --> L[Single Stranded]
F --> M[Nucleotides]
G --> N[Protein Synthesis]
G --> O[Transcription]
H --> P[Base Pairing]
I --> Q[Adenine]
I --> R[Guanine]
I --> S[Cytosine]
I --> T[Thymine]
J --> U[Codons]
K --> V[DNA Polymerase]
L --> W[Uracil]
M --> X[Adenine]
M --> Y[Guanine]
M --> Z[Cytosine]
M --> AA[Uracil]
N --> AB[Amino Acids]
O --> AC[RNA Polymerase]
AIM
graph TD;
AIM --> Cell_Biology;
AIM --> Genetics;
AIM --> Ecology;
AIM --> Evolution;
AIM --> Physiology;
Cell_Biology --> Cell_Structure;
Cell_Biology --> Cellular_Processes;
Genetics --> DNA;
Genetics --> Genes;
Genetics --> Genetic_Variation;
Ecology --> Populations;
Ecology --> Ecosystems;
Evolution --> Natural_Selection;
Evolution --> Speciation;
Physiology --> Animal_Physiology;
Physiology --> Plant_Physiology;
Contribution of Scientists in search of genetic material
graph TB
A[Contribution of Scientists in search of genetic material]
A --> B[Scientist 1]
A --> C[Scientist 2]
A --> D[Scientist 3]
B --> E[Discovery 1]
C --> F[Discovery 2]
D --> G[Discovery 3]
Features of genetic material
graph TB
A[Features of Genetic Material]
A --> B[Stability]
A --> C[Replication]
A --> D[Mutation]
A --> E[Information Storage]
B --> BA[Resistant to Change]
C --> CA[Accurate Duplication]
D --> DA[Variation for Evolution]
E --> EA[Codes for Traits]
Griffith Experiment
graph TB
A[Griffith Experiment]
A --> B[Materials]
B --> B1[Heat-killed S strain]
B --> B2[Living R strain]
B --> B3[Mice]
A --> C[Procedure]
C --> C1[Inject mice with heat-killed S strain]
C --> C2[Inject mice with living R strain]
C --> C3[Inject mice with mixture of heat-killed S strain and living R strain]
A --> D[Results]
D --> D1[Mice injected with heat-killed S strain survived]
D --> D2[Mice injected with living R strain survived]
D --> D3[Mice injected with mixture of heat-killed S strain and living R strain died]
A --> E[Conclusion]
E --> E1[Living R strain transformed into virulent S strain]
E --> E2[Discovery of bacterial transformation]
Streptococcus pneumonia
graph TD;
A[Streptococcus pneumonia] --> B((Biology));
B --> C{Microbiology};
C --> D[Gram-positive bacteria];
D --> E>Pathogen];
E --> F[Causes pneumonia];
F --> G[Antibiotic treatment];
Griffith Experiment on rat
graph TD;
A[Griffith Experiment on Rat];
B[Objective];
C[Procedure];
D[Results];
E[Conclusion];
A-->B;
A-->C;
A-->D;
A-->E;
B-->F[To prove transformation principle];
C-->G[Injecting mice with bacteria];
C-->H[Observing the results];
D-->I[Living S strain bacteria killed the mice];
D-->J[Living R strain bacteria did not kill the mice];
D-->K[Heat-killed S strain bacteria did not kill the mice];
D-->L[Heat-killed S strain and living R strain bacteria killed the mice];
E-->M[DNA is the transforming principle];
Conclusion
graph TB
A[Conclusion] --> B((Biology))
B --> C{Mermaid Version 9.3.0}
C --> D[Cell Biology]
C --> E[Genetics]
C --> F[Ecology]
C --> G[Evolution]
D --> H[Cell Structure]
D --> I[Cell Function]
E --> J[DNA]
E --> K[Genes]
F --> L[Populations]
F --> M[Communities]
G --> N[Natural Selection]
G --> O[Speciation]
Avery,MAcLeod, and McCarty Experiment
graph TB
A[Avery, MacLeod, and McCarty Experiment]
A --> B[Objective]
B --> B1[Prove that DNA is the genetic material]
A --> C[Method]
C --> C1[Used two strains of Pneumococcus]
C1 --> C2[Smooth(S) strain]
C1 --> C3[Rough(R) strain]
C --> C4[Extracted DNA from S strain]
C --> C5[Mixed R strain with S strain DNA]
A --> D[Results]
D --> D1[R strain transformed into S strain]
A --> E[Conclusion]
E --> E1[DNA is the transforming factor]
Conclusion of Experiment
graph TB
A[Conclusion of Experiment]
B[Results]
C[Discussion]
D[Implications]
E[Future Research]
A --> B
A --> C
A --> D
A --> E
B --> F[Data Analysis]
B --> G[Findings]
C --> H[Interpretation]
C --> I[Comparison with Previous Studies]
D --> J[Impact on Biology Field]
D --> K[Practical Applications]
E --> L[Proposed Experiments]
E --> M[Areas for Further Investigation]
The genetic material in viruses
graph TD;
A[The genetic material in viruses];
B[DNA Viruses];
C[RNA Viruses];
D[Single-Stranded];
E[Double-Stranded];
F[Single-Stranded];
G[Double-Stranded];
A-->B;
A-->C;
B-->D;
B-->E;
C-->F;
C-->G;
Life cycle of Bacteriphage
graph TB
A(Attachment) --> B(Entry of Phage DNA)
B --> C(Biosynthesis)
C --> D(Maturation)
D --> E(Lysis)
Why radioactive Phosphorus and Sulfur
graph TD;
A[Why radioactive Phosphorus and Sulfur] --> B((Subtopic 1));
A --> C((Subtopic 2));
B --> D{Further Detail 1};
C --> E{Further Detail 2};
Hershey-Chase experiment
graph TD;
A[Hershey-Chase Experiment] --> B[Background]
A --> C[Objective]
A --> D[Method]
A --> E[Results]
A --> F[Conclusion]
B --> G[DNA as genetic material]
B --> H[Previous experiments]
C --> I[Prove DNA is genetic material]
D --> J[Use of bacteriophages]
D --> K[Radioactive labeling]
E --> L[Protein found in supernatant]
E --> M[DNA found inside bacteria]
F --> N[DNA is the genetic material]
Conclusion
graph TD;
A[Conclusion] --> B((Biology))
B --> C[Cell Biology]
C --> D[DNA]
C --> E[RNA]
B --> F[Ecology]
F --> G[Population Biology]
F --> H[Environmental Biology]
B --> I[Evolution]
I --> J[Genetic Drift]
I --> K[Natural Selection]