Genetics and Evolution: Molecular Basis of Inheritance – 4

What are Nucleoid

graph TD; A[Nucleoid] A --> B[Definition] B --> C[Region within the cell of a prokaryote that contains all or most of the genetic material] A --> D[Characteristics] D --> E1[Not bounded by a membrane] D --> E2[Usually not a distinct structure] D --> E3[Visible only during replication] A --> F[Function] F --> G1[Contains the chromosome and numerous proteins] F --> G2[Involved in the control of cell division and other activities]

What are the differences between positive and negative super coilings

graph TB A["Super Coiling"] --> B["Positive Super Coiling"] A --> C["Negative Super Coiling"] B --> D["Characteristic 1 of Positive Super Coiling"] B --> E["Characteristic 2 of Positive Super Coiling"] C --> F["Characteristic 1 of Negative Super Coiling"] C --> G["Characteristic 2 of Negative Super Coiling"]

Why DNA packaging is needed

graph TB A["Why DNA Packaging is Needed"] A --> B["Protects DNA"] B --> C["From Damage"] B --> D["From Mutations"] A --> E["Organizes DNA"] E --> F["Improves Cell Function"] E --> G["Facilitates DNA Replication"] A --> H["Regulates Gene Expression"] H --> I["Turns Genes On/Off"] H --> J["Controls Cell Differentiation"]

What are the different protiens involved in Nucleosome Model

graph TB A[Nucleosome Model] A --> B[Protein 1] A --> C[Protein 2] A --> D[Protein 3] B --> E[Sub-protein 1.1] B --> F[Sub-protein 1.2] C --> G[Sub-protein 2.1] C --> H[Sub-protein 2.2] D --> I[Sub-protein 3.1] D --> J[Sub-protein 3.2]

What are the different types of chromosome depending on thier centromere position

graph TD; A[Chromosomes] -- Centromere Position --> B[Types]; B -- Telocentric --> BA[Telocentric Chromosome]; B -- Acrocentric --> BB[Acrocentric Chromosome]; B -- Submetacentric --> BC[Submetacentric Chromosome]; B -- Metacentric --> BD[Metacentric Chromosome];

Search of Genetic material

graph TB A[Search of Genetic Material] A --> B[DNA] A --> C[RNA] B --> D[Structure of DNA] B --> E[Function of DNA] C --> F[Structure of RNA] C --> G[Function of RNA] D --> H[Double Helix] D --> I[Nucleotides] E --> J[Genetic Code] E --> K[Replication] F --> L[Single Stranded] F --> M[Nucleotides] G --> N[Protein Synthesis] G --> O[Transcription] H --> P[Base Pairing] I --> Q[Adenine] I --> R[Guanine] I --> S[Cytosine] I --> T[Thymine] J --> U[Codons] K --> V[DNA Polymerase] L --> W[Uracil] M --> X[Adenine] M --> Y[Guanine] M --> Z[Cytosine] M --> AA[Uracil] N --> AB[Amino Acids] O --> AC[RNA Polymerase]

AIM

graph TD; AIM --> Cell_Biology; AIM --> Genetics; AIM --> Ecology; AIM --> Evolution; AIM --> Physiology; Cell_Biology --> Cell_Structure; Cell_Biology --> Cellular_Processes; Genetics --> DNA; Genetics --> Genes; Genetics --> Genetic_Variation; Ecology --> Populations; Ecology --> Ecosystems; Evolution --> Natural_Selection; Evolution --> Speciation; Physiology --> Animal_Physiology; Physiology --> Plant_Physiology;

Contribution of Scientists in search of genetic material

graph TB A[Contribution of Scientists in search of genetic material] A --> B[Scientist 1] A --> C[Scientist 2] A --> D[Scientist 3] B --> E[Discovery 1] C --> F[Discovery 2] D --> G[Discovery 3]

Features of genetic material

graph TB A[Features of Genetic Material] A --> B[Stability] A --> C[Replication] A --> D[Mutation] A --> E[Information Storage] B --> BA[Resistant to Change] C --> CA[Accurate Duplication] D --> DA[Variation for Evolution] E --> EA[Codes for Traits]

Griffith Experiment

graph TB A[Griffith Experiment] A --> B[Materials] B --> B1[Heat-killed S strain] B --> B2[Living R strain] B --> B3[Mice] A --> C[Procedure] C --> C1[Inject mice with heat-killed S strain] C --> C2[Inject mice with living R strain] C --> C3[Inject mice with mixture of heat-killed S strain and living R strain] A --> D[Results] D --> D1[Mice injected with heat-killed S strain survived] D --> D2[Mice injected with living R strain survived] D --> D3[Mice injected with mixture of heat-killed S strain and living R strain died] A --> E[Conclusion] E --> E1[Living R strain transformed into virulent S strain] E --> E2[Discovery of bacterial transformation]

Streptococcus pneumonia

graph TD; A[Streptococcus pneumonia] --> B((Biology)); B --> C{Microbiology}; C --> D[Gram-positive bacteria]; D --> E>Pathogen]; E --> F[Causes pneumonia]; F --> G[Antibiotic treatment];

Griffith Experiment on rat

graph TD; A[Griffith Experiment on Rat]; B[Objective]; C[Procedure]; D[Results]; E[Conclusion]; A-->B; A-->C; A-->D; A-->E; B-->F[To prove transformation principle]; C-->G[Injecting mice with bacteria]; C-->H[Observing the results]; D-->I[Living S strain bacteria killed the mice]; D-->J[Living R strain bacteria did not kill the mice]; D-->K[Heat-killed S strain bacteria did not kill the mice]; D-->L[Heat-killed S strain and living R strain bacteria killed the mice]; E-->M[DNA is the transforming principle];

Conclusion

graph TB A[Conclusion] --> B((Biology)) B --> C{Mermaid Version 9.3.0} C --> D[Cell Biology] C --> E[Genetics] C --> F[Ecology] C --> G[Evolution] D --> H[Cell Structure] D --> I[Cell Function] E --> J[DNA] E --> K[Genes] F --> L[Populations] F --> M[Communities] G --> N[Natural Selection] G --> O[Speciation]

Avery,MAcLeod, and McCarty Experiment

graph TB A[Avery, MacLeod, and McCarty Experiment] A --> B[Objective] B --> B1[Prove that DNA is the genetic material] A --> C[Method] C --> C1[Used two strains of Pneumococcus] C1 --> C2[Smooth(S) strain] C1 --> C3[Rough(R) strain] C --> C4[Extracted DNA from S strain] C --> C5[Mixed R strain with S strain DNA] A --> D[Results] D --> D1[R strain transformed into S strain] A --> E[Conclusion] E --> E1[DNA is the transforming factor]

Conclusion of Experiment

graph TB A[Conclusion of Experiment] B[Results] C[Discussion] D[Implications] E[Future Research] A --> B A --> C A --> D A --> E B --> F[Data Analysis] B --> G[Findings] C --> H[Interpretation] C --> I[Comparison with Previous Studies] D --> J[Impact on Biology Field] D --> K[Practical Applications] E --> L[Proposed Experiments] E --> M[Areas for Further Investigation]

The genetic material in viruses

graph TD; A[The genetic material in viruses]; B[DNA Viruses]; C[RNA Viruses]; D[Single-Stranded]; E[Double-Stranded]; F[Single-Stranded]; G[Double-Stranded]; A-->B; A-->C; B-->D; B-->E; C-->F; C-->G;

Life cycle of Bacteriphage

graph TB A(Attachment) --> B(Entry of Phage DNA) B --> C(Biosynthesis) C --> D(Maturation) D --> E(Lysis)

Why radioactive Phosphorus and Sulfur

graph TD; A[Why radioactive Phosphorus and Sulfur] --> B((Subtopic 1)); A --> C((Subtopic 2)); B --> D{Further Detail 1}; C --> E{Further Detail 2};

Hershey-Chase experiment

graph TD; A[Hershey-Chase Experiment] --> B[Background] A --> C[Objective] A --> D[Method] A --> E[Results] A --> F[Conclusion] B --> G[DNA as genetic material] B --> H[Previous experiments] C --> I[Prove DNA is genetic material] D --> J[Use of bacteriophages] D --> K[Radioactive labeling] E --> L[Protein found in supernatant] E --> M[DNA found inside bacteria] F --> N[DNA is the genetic material]

Conclusion

graph TD; A[Conclusion] --> B((Biology)) B --> C[Cell Biology] C --> D[DNA] C --> E[RNA] B --> F[Ecology] F --> G[Population Biology] F --> H[Environmental Biology] B --> I[Evolution] I --> J[Genetic Drift] I --> K[Natural Selection]