Work Power Energy Question 5

Question 5 - 2024 (29 Jan Shift 2)

The bob of a pendulum was released from a horizontal position. The length of the pendulum is $10 \mathrm{~m}$. If it dissipates $10 %$ of its initial energy against air resistance, the speed with which the bob arrives at the lowest point is : [Use, $\mathrm{g}: 10 \mathrm{~ms}^{-2}$ ]

(1) $6 \sqrt{5} \mathrm{~ms}^{-1}$

(2) $5 \sqrt{6} \mathrm{~ms}^{-1}$

(3) $5 \sqrt{5} \mathrm{~ms}^{-1}$

(4) $2 \sqrt{5} \mathrm{~ms}^{-1}$

Show Answer

Answer: (1)

Solution:

$\ell=10 \mathrm{~m}$

Initial energy $=\mathrm{mg} \ell$

So, $\frac{9}{10} \mathrm{mg} \ell=\frac{1}{2} \mathrm{mv}^{2}$

$\Rightarrow \frac{9}{10} \times 10 \times 10=\frac{1}{2} \mathrm{v}^{2}$

$\mathrm{v}^{2}=180$

$\mathrm{v}=\sqrt{180}=6 \sqrt{5} \mathrm{~m} / \mathrm{s}$