Waves And Sound Question 5

Question 5 - 2024 (31 Jan Shift 1)

The fundamental frequency of a closed organ pipe is equal to the first overtone frequency of an open organ pipe. If length of the open pipe is $60 \mathrm{~cm}$, the length of the closed pipe will be :

(1) $60 \mathrm{~cm}$

(2) $45 \mathrm{~cm}$

(3) $30 \mathrm{~cm}$

(4) $15 \mathrm{~cm}$

Show Answer

Answer: (4)

Solution:

$\frac{\lambda}{4}=\mathrm{L}_{1} \quad 2\left(\frac{\lambda}{2}\right)=\lambda$

$\mathrm{v}=\mathrm{f} \lambda \quad \mathrm{f}{2}=\frac{2 \mathrm{v}}{2 \mathrm{~L}{2}}$

$\mathrm{v}=\mathrm{f}{1}\left(4 \mathrm{~L}{1}\right) \quad \mathrm{f}{2}=\frac{\mathrm{v}}{\mathrm{L}{2}}$

$\mathrm{f}{1}=\frac{\mathrm{v}}{4 \mathrm{~L}{1}}$

$\mathrm{f}{1}=\mathrm{f}{2}$

$\frac{\mathrm{v}}{4 \mathrm{~L}{1}}=\frac{\mathrm{v}}{\mathrm{L}{2}}$

$\Rightarrow \mathrm{L}{2}=4 \mathrm{~L}{1}$

$60=4 \times \mathrm{L}_{1}$

$\mathrm{L}_{1}=15 \mathrm{~cm}$