Units And Dimensions Question 7

Question 7 - 2024 (31 Jan Shift 2)

Consider two physical quantities $\mathrm{A}$ and $\mathrm{B}$ related to each other as $\mathrm{E}=\frac{\mathrm{B}-\mathrm{x}^{2}}{\mathrm{At}}$ where $\mathrm{E}, \mathrm{x}$ and $\mathrm{t}$ have dimensions of energy, length and time respectively. The dimension of $A B$ is

(1) $\mathrm{L}^{-2} \mathrm{M}^{1} \mathrm{~T}^{0}$

(2) $\mathrm{L}^{2} \mathrm{M}^{-1} \mathrm{~T}^{1}$

(3) $\mathrm{L}^{-2} \mathrm{M}^{-1} \mathrm{~T}^{1}$

(4) $\mathrm{L}^{0} \mathrm{M}^{-1} \mathrm{~T}^{1}$

Show Answer

Answer: (2)

Solution:

$[\mathrm{B}]=\mathrm{L}^{2}$

$\mathrm{A}=\frac{\mathrm{x}^{2}}{\mathrm{tE}}=\frac{\mathrm{L}^{2}}{\mathrm{TML}^{2} \mathrm{~T}^{-2}}=\frac{1}{\mathrm{MT}^{-1}}$

$[\mathrm{A}]=\mathrm{M}^{-1} \mathrm{~T}$

$[A B]=\left[\mathrm{L}^{2} \mathrm{M}^{-1} \mathrm{~T}^{1}\right]$