Thermal Properties Of Matter Question 2

Question 2 - 2024 (31 Jan Shift 1)

Two conductors have the same resistances at $0^{\circ} \mathrm{C}$ but their temperature coefficients of resistance are $\alpha_{1}$ and $\alpha_{2}$. The respective temperature coefficients for their series and parallel combinations are :

(1) $\alpha_{1}+\alpha_{2}, \frac{\alpha_{1}+\alpha_{2}}{2}$

(2) $\frac{\alpha_{1}+\alpha_{2}}{2}, \frac{\alpha_{1}+\alpha_{2}}{2}$

(3) $\alpha_{1}+\alpha_{2}, \frac{\alpha_{1} \alpha_{2}}{\alpha_{1}+\alpha_{2}}$

(4) $\frac{\alpha_{1}+\alpha_{2}}{2}, \alpha_{1}+\alpha_{2}$

Show Answer

Answer: (2)

Solution:

Series:

$\mathrm{R}{\mathrm{eq}}=\mathrm{R}{1}+\mathrm{R}_{2}$

$2 \mathrm{R}\left(1+\alpha_{\mathrm{eq}} \Delta \theta\right)=\mathrm{R}\left(1+\alpha_{1} \Delta \theta\right)+\mathrm{R}\left(1+\alpha_{2} \Delta \theta\right)$

$2 \mathrm{R}\left(1+\alpha_{\text {eq }} \Delta \theta\right)=2 \mathrm{R}+\left(\alpha_{1}+\alpha_{2}\right) \mathrm{R} \Delta \theta$

Parallel :

$\frac{1}{R_{\mathrm{eq}}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}$

$\frac{1}{\frac{R}{2}\left(1+\alpha_{\mathrm{eq}} \Delta \theta\right)}=\frac{1}{\mathrm{R}\left(1+\alpha_{1} \Delta \theta\right)}+\frac{1}{\mathrm{R}\left(1+\alpha_{2} \Delta \theta\right)}$

$2\left[\left(1+\alpha_{1} \Delta \theta\right)\left(1+\alpha_{2} \Delta \theta\right)\right]$

$=\left[2+\left(\alpha_{1}+\alpha_{2}\right) \Delta \theta\right]\left[1+\alpha_{\mathrm{eq}} \Delta \theta\right]$

$2\left[1+\alpha_{1} \Delta \theta+\alpha_{2} \Delta \theta+\alpha_{1} \alpha_{2} \Delta \theta\right]$

$=2+2 \alpha_{\text {eq }} \Delta \theta+\left(\alpha_{1}+\alpha_{2}\right) \Delta \theta+\alpha_{\text {eq }}\left(\alpha_{1}+\alpha_{2}\right) \Delta \theta^{2}$

Neglecting small terms

$2+2\left(\alpha_{1}+\alpha_{2}\right) \Delta \theta=2+2 \alpha_{\text {eq }} \Delta \theta+\left(\alpha_{1}+\alpha_{2}\right) \Delta \theta$

$\left(\alpha_{1}+\alpha_{2}\right) \Delta \theta=2 \alpha_{\mathrm{eq}} \Delta \theta$

$\alpha_{\text {eq }}=\frac{\alpha_{1}+\alpha_{2}}{2}$