Oscillations Question 5

Question 5 - 2024 (29 Jan Shift 2)

A simple harmonic oscillator has an amplitude $A$ and time period $6 \pi$ second. Assuming the oscillation starts from its mean position, the time required by it to travel from $x=A$ to $x=\frac{\sqrt{3}}{2} A$ will be $\frac{\pi}{\mathrm{x}} \mathrm{s}$, where $\mathrm{x}=$

Show Answer

Answer: (2)

Solution:

From phasor diagram particle has to move from $\mathrm{P}$ to $\mathrm{Q}$ in a circle of radius equal to amplitude of SHM.

$\cos \phi=\frac{\frac{\sqrt{3} \mathrm{~A}}{2}}{\mathrm{~A}}=\frac{\sqrt{3}}{2}$

$\phi=\frac{\pi}{6}$

Now, $\frac{\pi}{6}=\omega \mathrm{t}$

$\frac{\pi}{6}=\frac{2 \pi}{T} t$

$\frac{\pi}{6}=\frac{2 \pi}{6 \pi} t$

$\mathrm{t}=\frac{\pi}{2}$

So, $x=2$