Motion In Two Dimensions Question 2

Question 2 - 2024 (29 Jan Shift 1)

If the radius of curvature of the path of two particles of same mass are in the ratio $3: 4$, then in order to have constant centripetal force, their velocities will be in the ratio of:

(1) $\sqrt{3}: 2$

(2) $1: \sqrt{3}$

(3) $\sqrt{3}: 1$

(4) $2: \sqrt{3}$

Show Answer

Answer: (1)

Solution:

Given $\mathrm{m}{1}=\mathrm{m}{2}$ and $\frac{r_{1}}{r_{2}}=\frac{3}{4}$

As centripetal force $F=\frac{m^{2}}{r}$

In order to have constant (same in this question) centripetal force

$\mathrm{F}{1}=\mathrm{F}{2}$

$\frac{\mathrm{m}{1} \mathrm{v}{1}^{2}}{\mathrm{r}{1}}=\frac{\mathrm{m}{2} \mathrm{v}{2}^{2}}{\mathrm{r}{2}}$ $\Rightarrow \frac{\mathrm{v}{1}}{\mathrm{v}{2}}=\sqrt{\frac{\mathrm{r}{1}}{\mathrm{r}{2}}}=\frac{\sqrt{3}}{2}$