Motion In One Dimension Question 5

Question 5 - 2024 (27 Jan Shift 2)

A bullet is fired into a fixed target looses one third of its velocity after travelling $4 \mathrm{~cm}$. It penetrates further $\mathrm{D} \times 10^{-3} \mathrm{~m}$ before coming to rest. The value of $\mathrm{D}$ is :

[We changed options. In official NTA paper no option was correct.]

(1) 2

(2) 5

(3) 3

(4) 32

Show Answer

Answer: (4)

Solution:

$v^{2}-u^{2}=2 a S$

$\left(\frac{2 \mathrm{u}}{3}\right)^{2}=\mathrm{u}^{2}+2(-\mathrm{a})\left(4 \times 10^{-2}\right)$

$\frac{4 u^{2}}{9}=u^{2}-2 \mathrm{a}\left(4 \times 10^{-2}\right)$

$-\frac{5 \mathrm{u}^{2}}{9}=-2 \mathrm{a}\left(4 \times 10^{-2}\right) \ldots$

$0=\left(\frac{2 \mathrm{u}}{3}\right)^{2}+2(-\mathrm{a})(\mathrm{x})$

$-\frac{4 \mathrm{u}^{2}}{9}=-2 \mathrm{ax}$

(1) $/(2)$

$\frac{5}{4}=\frac{4 \times 10^{-2}}{\mathrm{x}}$

$x=\frac{16}{5} \times 10^{-2}$

$\mathrm{x}=3 \cdot 2 \times 10^{-2} \mathrm{~m}$

$\mathrm{x}=32 \times 10^{-3} \mathrm{~m}$