Motion In One Dimension Question 4

Question 4 - 2024 (27 Jan Shift 1)

A particle starts from origin at $\mathrm{t}=0$ with a velocity $5 \hat{\mathrm{i}} \mathrm{m} / \mathrm{s}$ and moves in $\mathrm{x}-\mathrm{y}$ plane under action of a force which produces a constant acceleration of $(3 \hat{i}+2 \hat{j}) \mathrm{m} / \mathrm{s}^{2}$. If the $x$-coordinate of the particle at that instant is $84 \mathrm{~m}$, then the speed of the particle at this time is $\sqrt{\alpha} \mathrm{m} / \mathrm{s}$. The value of $\alpha$ is

Show Answer

Answer: (673)

Solution:

$\mathrm{u}{\mathrm{x}}=5 \mathrm{~m} / \mathrm{s} \quad \mathrm{a}{\mathrm{x}}=3 \mathrm{~m} / \mathrm{s}^{2} h \mathrm{x}=84 \mathrm{~m}$

$\mathrm{v}{\mathrm{x}}^{2}-\mathrm{u}{\mathrm{x}}^{2}=2 \mathrm{ax}$

$\mathrm{v}_{\mathrm{x}}^{2}-25=2(3)(84)$

$\mathrm{V}_{\mathrm{x}}=23 \mathrm{~m} / \mathrm{s}$

$\mathrm{v}{\mathrm{x}}-\mathrm{u}{\mathrm{x}}=\mathrm{a}_{\mathrm{x}} \mathrm{t}$

$\mathrm{t}=\frac{23-5}{3}=6 \mathrm{~s}$

$\mathrm{v}{\mathrm{y}}=0+\mathrm{a}{\mathrm{y}} \mathrm{t}=0+2 \times(6)=12 \mathrm{~m} / \mathrm{s}$

$\mathrm{v}^{2}=\mathrm{v}{\mathrm{x}}^{2}+\mathrm{v}{\mathrm{y}}^{2}=23^{2}+12^{2}=673$

$\mathrm{v}=\sqrt{673} \mathrm{~m} / \mathrm{s}$