Mechanical Properties Of Solids Question 5

Question 5 - 2024 (29 Jan Shift 2)

A wire of length $L$ and radius $r$ is clamped at one end. If its other end is pulled by a force $\mathrm{F}$, its length increases by $l$. If the radius of the wire and the applied force both are reduced to half of their original values keeping original length constant, the increase in length will become.

(1) 3 times

(2) $3 / 2$ times

(3) 4 times

(4) 2 times

Show Answer

Answer: (4)

Solution:

$\mathrm{Y}=\frac{\text { stress }}{\text { strain }}$

$\mathrm{Y}=\frac{\frac{\mathrm{F}}{\frac{\ell}{2}}}{\frac{\ell}{\mathrm{L}}}$

$\mathrm{F}=\mathrm{Y} \pi \mathrm{r}^{2} \times \frac{\ell}{\mathrm{L}}$.

$\mathrm{Y}=\frac{\frac{\mathrm{Fr} / 2}{\frac{\Delta \ell}{2}}}{\mathrm{~L}}$

$\mathrm{F}=\mathrm{Y} \frac{\Delta \ell}{\mathrm{L}} \times 2 \times \frac{\pi \mathrm{r}^{2}}{4}$

From (i)

$\mathrm{Y} \pi \mathrm{r}^{2} \frac{\ell}{\mathrm{L}}=\mathrm{Y} \frac{\Delta \ell}{\mathrm{L}} \frac{\pi \mathrm{r}^{2}}{2}$

$\Delta \ell=2 \ell$