Mathematics In Physics Question 7

Question 7 - 2024 (31 Jan Shift 2)

If two vectors $\vec{A}$ and $\vec{B}$ having equal magnitude $\mathrm{R}$ are inclined at angle $\theta$, then

(1) $|\overrightarrow{\mathrm{A}}-\overrightarrow{\mathrm{B}}|=\sqrt{2} \mathrm{R} \sin \left(\frac{\theta}{2}\right)$

(2) $|\vec{A}+\vec{B}|=2 R \sin \left(\frac{\theta}{2}\right)$

(3) $|\overrightarrow{\mathrm{A}}+\overrightarrow{\mathrm{B}}|=2 \mathrm{R} \cos \left(\frac{\theta}{2}\right)$

(4) $|\overrightarrow{\mathrm{A}}-\overrightarrow{\mathrm{B}}|=2 R \cos \left(\frac{\theta}{2}\right)$

Show Answer

Answer: (3)

Solution:

The magnitude of resultant vector

$R^{\prime}=\sqrt{a^{2}+b^{2}+2 a b \cos \theta}$

Here $\mathrm{a}=\mathrm{b}=\mathrm{R}$

Then $R^{\prime}=\sqrt{R^{2}+R^{2}+2 R^{2} \cos \theta}$

$=R \sqrt{2} \sqrt{1+\cos \theta}$

$=\sqrt{2} R \sqrt{2 \cos ^{2} \frac{\theta}{2}}$

$=2 R \cos \frac{\theta}{2}$