Laws Of Motion Question 4

Question 4 - 2024 (27 Jan Shift 1)

A train is moving with a speed of $12 \mathrm{~m} / \mathrm{s}$ on rails which are $1.5 \mathrm{~m}$ apart. To negotiate a curve radius $400 \mathrm{~m}$, the height by which the outer rail should be raised with respect to the inner rail is (Given, $g=10 \mathrm{~m} / \mathrm{s}^{2}$ ):

(1) $6.0 \mathrm{~cm}$

(2) $5.4 \mathrm{~cm}$

(3) $4.8 \mathrm{~cm}$

(4) $4.2 \mathrm{~cm}$

Show Answer

Answer: (2)

Solution:

$\tan \theta=\frac{\mathrm{v}^{2}}{\mathrm{Rg}}=\frac{12 \times 12}{10 \times 400}$

$\tan \theta=\frac{\mathrm{h}}{1.5}$

$\Rightarrow \frac{\mathrm{h}}{1.5}=\frac{144}{4000}$

$\mathrm{h}=5.4 \mathrm{~cm}$