Gravitation Question 1

Question 1 - 2024 (01 Feb Shift 1)

If $\mathrm{R}$ is the radius of the earth and the acceleration due to gravity on the surface of earth is $g=\pi^{2} \mathrm{~m} / \mathrm{s}^{2}$, then the length of the second’s pendulum at a height $h=2 R$ from the surface of earth will be,:

(1) $\frac{2}{9} \mathrm{~m}$

(2) $\frac{1}{9} \mathrm{~m}$

(3) $\frac{4}{9} \mathrm{~m}$

(4) $\frac{8}{9} \mathrm{~m}$

Show Answer

Answer: (2)

Solution:

$\mathrm{g}^{\prime}=\frac{\mathrm{GMe}}{(3 \mathrm{R})^{2}}=\frac{1}{9} \mathrm{~g}$

$\mathrm{T}=2 \pi \sqrt{\frac{\ell}{\mathrm{g}^{\prime}}}$

Since the time period of second pendulum is $2 \mathrm{sec}$.

$\mathrm{T}=2 \mathrm{sec}$

$2=2 \pi \sqrt{\frac{\ell}{g} 9}$

$\ell=\frac{1}{9} \mathrm{~m}$