Electrostatics Question 11

Question 11 - 2024 (29 Jan Shift 1)

An electron is moving under the influence of the electric field of a uniformly charged infinite plane sheet $S$ having surface charge density $+\sigma$. The electron at $t=0$ is at a distance of $1 \mathrm{~m}$ from $\mathrm{S}$ and has a speed of $1 \mathrm{~m} / \mathrm{s}$. The maximum value of $\sigma$ if the electron strikes $\mathrm{S}$ at $\mathrm{t}=1 \mathrm{~s}$ is $\alpha\left[\frac{\mathrm{m} \epsilon_{0}}{\mathrm{e}}\right] \frac{\mathrm{C}}{\mathrm{m}^{2}}$ the value of $\alpha$ is

Show Answer

Answer: (8)

$\mathrm{u}=1 \mathrm{~m} / \mathrm{s} ; \mathrm{a}=-\frac{\sigma \mathrm{e}}{2 \varepsilon_{0} \mathrm{~m}}$

$\mathrm{t}=1 \mathrm{~s}$

$\mathrm{S}=-1 \mathrm{~m}$

Using $\mathrm{S}=\mathrm{ut}+\frac{1}{2} \mathrm{at}^{2}$

$-1=1 \times 1-\frac{1}{2} \times \frac{\sigma \mathrm{e}}{2 \varepsilon_{0} \mathrm{~m}} \times(1)^{2}$

$\therefore \sigma=8 \frac{\varepsilon_{0} \mathrm{~m}}{\mathrm{e}}$

$\therefore \alpha=8$