Current Electricity Question 5

Question 5 - 2024 (01 Feb Shift 2)

To measure the temperature coefficient of resistivity $\alpha$ of a semiconductor, an electrical arrangement shown in the figure is prepared. The arm $\mathrm{BC}$ is made up of the semiconductor. The experiment is being conducted at $25^{\circ} \mathrm{C}$ and resistance of the semiconductor arm is $3 \mathrm{~m} \Omega$. Arm BC is cooled at a constant rate of $2^{\circ} \mathrm{C} / \mathrm{s}$. If the galvanometer $\mathrm{G}$ shows no deflection after $10 \mathrm{~s}$, then $\alpha$ is :

(1) $-2 \times 10^{-2 \circ} \mathrm{C}^{-1}$

(2) $-1.5 \times 10^{-2 \circ} \mathrm{C}^{-1}$

(3) $-1 \times 10^{-2 \circ} \mathrm{C}^{-1}$

(4) $-2.5 \times 10^{-2}{ }^{\circ} \mathrm{C}^{-1}$

Show Answer

Answer: (3)

Solution:

For no deflection $\frac{0.8}{1}=\frac{R}{3}$

$\Rightarrow \mathrm{R}=2.4 \mathrm{~m} \Omega$

Temperature fall in $10 \mathrm{~s}=20^{\circ} \mathrm{C}$

$\Delta \mathrm{R}=\mathrm{R} \alpha \Delta \mathrm{t}$

$\alpha=\frac{\Delta \mathrm{R}}{\mathrm{R} \Delta \mathrm{t}}=\frac{-0.6}{3 \times 20}$

$=-10^{-2} \mathbf{C}^{-1}$