Current Electricity Question 18

Question 18 - 2024 (30 Jan Shift 1)

An electric toaster has resistance of $60 \Omega$ at room temperature $\left(27^{\circ} \mathrm{C}\right)$. The toaster is connected to a $220 \mathrm{~V}$ supply. If the current flowing through it reaches $2.75 \mathrm{~A}$, the temperature attained by toaster is around : (if $\alpha=2 \times 10^{-4} /{ }^{\circ} \mathrm{C}$ )

(1) $694^{\circ} \mathrm{C}$

(2) $1235^{\circ} \mathrm{C}$

(3) $1694^{\circ} \mathrm{C}$

(4) $1667^{\circ} \mathrm{C}$

Show Answer

Answer: (3)

Solution:

$\mathrm{R}{\mathrm{T}=27}=60 \Omega, R{T}=\frac{220}{2.75}=80 \Omega$

$\mathrm{R}=\mathrm{R}_{0}(1+\alpha \Delta \mathrm{T})$

$80=60\left[1+2 \times 10^{-4}(\mathrm{~T}-27)\right]$

$\mathrm{T} \approx 1694^{\circ} \mathrm{C}$