Current Electricity Question 12

Question 12 - 2024 (29 Jan Shift 1)

The electric current through a wire varies with time as $I=I_{0}+\beta$ t. where $I_{0}=20 \mathrm{~A}$ and $\beta=3 \mathrm{~A} / \mathrm{s}$. The amount of electric charge crossed through a section of the wire in $20 \mathrm{~s}$ is :

(1) $80 \mathrm{C}$

(2) $1000 \mathrm{C}$

(3) $800 \mathrm{C}$

(4) $1600 \mathrm{C}$

Show Answer

Answer: (2)

Solution:

Given that

Current $I=I_{0}+\beta t$

$I_{0}=20 \mathrm{~A}$

$\beta=3 \mathrm{~A} / \mathrm{s}$

$\mathrm{I}=20+3 \mathrm{t}$

$\frac{\mathrm{dq}}{\mathrm{dt}}=20+3 \mathrm{t}$

$\int_{0}^{\mathrm{q}} \mathrm{dq}=\int_{0}^{20}(20+3 \mathrm{t}) \mathrm{dt}$

$q=\int_{0}^{20} 20 d t+\int_{0}^{20} 3 t d t$

$\mathrm{q}=\left[20 \mathrm{t}+\frac{3 \mathrm{t}^{2}}{2}\right]_{0}^{20}=1000 \mathrm{C}$