Atomic Physics Question 2

Question 2 - 2024 (01 Feb Shift 2)

A particular hydrogen - like ion emits the radiation of frequency $3 \times 10^{15} \mathrm{~Hz}$ when it makes transition from $n=2$ to $n=1$. The frequency of radiation emitted in transition from $\mathrm{n}=3$ to $\mathrm{n}=1$ is $\frac{x}{9} \times 10^{15} \mathrm{~Hz}$, when $\mathrm{x}=$

Show Answer

Answer: (32)

Solution:

$E=-13.6 z^{2}\left(\frac{1}{n_{i}^{2}}-\frac{1}{n_{f}^{2}}\right)$

$\mathrm{E}=\mathrm{C}\left(\frac{1}{\mathrm{n}{\mathrm{f}}^{2}}-\frac{1}{\mathrm{n}{\mathrm{i}}^{2}}\right)$

$h v=C\left[\frac{1}{n_{f}^{2}}-\frac{1}{n_{i}^{2}}\right]$

$\frac{v_{1}}{v_{2}}=\frac{\left[\frac{1}{n_{f}^{2}}-\frac{1}{n_{i}^{2}}\right]{2-1}}{\left[\frac{1}{n{f}^{2}}-\frac{1}{n_{i}^{2}}\right]_{3-1}}$

$=\frac{\left[\frac{1}{1}-\frac{1}{4}\right]}{\left[\frac{1}{1}-\frac{1}{9}\right]}=\frac{3 / 4}{8 / 9}$

$=\frac{3}{4} \times \frac{9}{8}$

$\frac{v_{1}}{v_{2}}=\frac{27}{32}$

$v_{2}=\frac{32}{27} v_{1}=\frac{32}{27} \times 3 \times 10^{15} \mathrm{~Hz}=\frac{32}{9} \times 10^{15} \mathrm{~Hz}$